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ABSTRACT

The object of this work is to determine how a freely falling human

being can change the orientation (attitude) of his body by moving parts

of the body relative to each other. To this end, four models of the

humanbody are studied in connection with the following two problems:

I) Howdoes the orientation of each part of the body change when the

relative motions of the parts proceed in certain specified ways?

2) How, if at all, can the parts be movedrelative to each other so as

to bring the model from a given initial state to a given final state?

In both problems it is assumedthat the system is initially at rest so

far as rotational motion is concerned. In the case of the first problem,

results are presented for each of the four models considered; in three

instances these results are in the form of plots showing possible re-

orientations for a typical humanbeing° A general method of solution is

given for the second problem, and this method is applied to a model of

the humanbody.
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I. INTRODUCTION

I. Background

i.I Manned exploration of space presupposes the ability to perform

useful tasks while in a state of free fall ('_eightlessness"). Since this

state can be attained for only a few seconds at a time in experiments not

involving orbital flight, little is known about the difficulties associ-

ated with performing specific tasks while falling freely. However, such

knowledge is necessary in order to plan missions and train personnel, and

it is thus natural to seek new means for obtaining the required information.

Man's mobility--his ability to change the position of his body--is

of primary importance in this connection. This dissertation deals with

a particular facet of this problem, namely with changes in orientation

(attitude) of the body associated with relative motions of body parts.

Broadly speaking, this work deals with the application of principles

of mechanics to human gross motor activity. # The following survey of

past work in this field will not only provide useful background informa-

tion, but should also indicate the motivation for the present work.

1.2 A number of books deal with human activity in a general way by

reference to mechanics. In one by Fischer [1], _ published in 1906, the

body is considered to consist of n links. The mechanics of such a

+

"Gross motor activity" refers to the relative motions of the head,

limbs, and major sections of the trunk, and will hereafter be called

"motor activity" or just "activity."

Numbers in brackets designate references listed at the end of the

dissertation.
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system is developed by starting with a three-link planar system and then

extending the analysis to the three dimensional, n-link case° Equations

of motion are obtained and, in the second part of the book, the author

discusses applications of his theory to models of the humanbody. Some

of the subjects covered here are: determination of masses, mass centers,

and momentsof inertia for the whole body and its parts, muscle forces

and the resulting momentsat the joints, and questions of equilibrium.

However_no applications are given for the equations of motion. Thus, it

must be concluded that Fischer does not really investigate the problem of

motion of the humanbody°

A more modern book dealing with the mechanics of humanactivity was

written by Williams, a physical therapist, and Lissner, an engineer [3].

In essence, it is a textbook on elementary statics as applied to the hu-

manbody. Although it was written to present mechanics to the therapist,

it is a useful reference on humananatomy for the engineer.

Several books, written primarily by physical educators, attempt to

deal with the motion of the humanbody in a rather broad, but systematic

way° Someauthors, such as Broer [4], open with a rudimentary exposition

of mechanics, the presumption being that an elementary understanding of

force, acceleration, and angular momentumis both useful and, in some

sense, adequate for an understanding of body motion. Others, for example,

Cooper and Glassow [5], must feel that knowledge of mechanics is not pre-

requisite to an understanding of body motion, for their works contain a

discussion of mechanics only as "additional material," if at all.

1.3 Several specific types of humanmotor activity have been stu-

died, at least in part, by reference to principles of mechanics.

_



However, some of the investigators were not primarily mechanicians, and

their use of mechanics was not always correct.

The activity which has probably been studied most extensively is

locomotion, i.e., walking and running. While many authors in this field,

Fenn [6,7,8] and Margaria and Cavagna [9], for example, make liberal use

of some of the concepts of mechanics such as kinetic and potential energy,

force, work, and the motions of pendulums, there appears to be little

theoretical basis for their use of these concepts.

Perhaps the most complete work available on human motor activity was

written by Amar [i0] and originally published in French in 1914. Amar

was interested in the efficiency of human activity in connection with

industrial labor. Consequently, he considers not only the mechanics of

body movement, but also questions of fatigue, diet, the conversion of

chemical energy into mechanical energy, and the determination of the most

efficient procedure for doing a given task° The book commences with a

section on "the general principles of mechanics" which includes element-

ary statics and dynamics and the structural properties of the materials

of which the body is constructed.

The mechanics _ of some athletic events have been studied by a few

investigators, usually coaches who have had little or no formal training

in analytical mechanics. When an analysis based on analytical mechanics

is attempted at all, it usually deals with an implement used, e.g., the

bending of a vaulting pole or the aerodynamics of a javelin, rather than

the athlete himself. Cureton [11-15], in 1935, wrote a series of articles

"Mechanics" in this context is often intended in its more general

sense: "an analysis of the act in terms of the dimensional, force and

time relationships" (from Cureton [ii]).

- 3-



on the mechanics of track running, the track racing start, the shot put,

the high jump, and the broad jump° These articles generally consist of

vague statements about forces of action and reaction, power, and various

classes of levers° Cureton also studied the mechanics of swimming [16],

and Counsilman [17] determined the resistive and propulsive forces of

swimmersexperimentally.

A book on the mechanics of the pole vault was written by Richard

Ganslen [18], a champion vaulter who is considered "the world's greatest

authority" [19] on the subject. Suffice it to say that this book con-

cludes with a list of the "Laws of Mechanics," two of which are "To ac-

celerate angular velocity in swinging exercises, lengthen the radius of

gyration on the downswingand shorten the radius on the up-swing and

"Placing of one arm in an unbalanced position creates a gyroscopic

effecte"

In a volume in which he introduces those aspects of mechanics which

are particularly useful for the analysis of athletic events, Dyson [20]

was probably more successful than any other author in describing track

and field events in terms of the principles of mechanics° However, since

mechanics was employed in a very elementary, qualitative manner, one may

well ask whether the descriptions were devised to agree with observations

or whether they are actually valid statements of the essential physical

relationships.

1.4 Anthropometry is the science of measuring the humanbody and

its parts. Measurementssuch as those of length, mass, location of the

mass center, momentof inertia, or kinematical constraint either use the

principles of mechanics for theil determination or are of use to the



engineer when studying the humanbody°

The work of Braune and Fischer [21] on the location of the mass cen-

ter of the humanbody was published in 1889 and stands as a landmark in

anthropometry. The measurementswere madeon four frozen cadavers. After

determining the location of the mass center of individual parts of the

body, a cartesian coordinate system was used to locate the various parts

in relation to each other. This allowed the description of various body

positions and the calculation of the location of the mass center of the

whole body for these positions. In this way, Braune and Fisher deter-

mined the location of the mass center of the humanbody for several situa-

tions of military interest.

The work of Braune and Fischer was extended by Dempster [22], who

in 1955 reported on an additional eight cadavers. However, DempSter's

primary contribution was the determination of the anatomical constraints

imposed at the joints of the humanbody. His results were presented gra-

phically, and, in addition, he gave detailed instructions for the con-

struction of a kinematically correct manikin.

The nation's space program has created a need for information of the

type given by Braune and Fischer and Dempster. Most of this work is cur-

rently being done at the AerospaceMedical Research Laboratories, Wright-

Patterson Air Force Base, Ohio. In one study, reported in 1963, Santschi,

Du Bois, and Omoto [23] measured the location of the mass center as well

as the momentsof inertia for the mass center of the living humanbody in

eight selected positions. A similar study [24] was made for a seated sub-

ject wearing a space suit°

Hanavan [25,26], in 1964, presented a mathematical model for the
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determination of inertial properties of the humanbody. The model con-

sisted of fifteen rigid bodies, and the body position was defined by

giving the relative orientations of the fifteen componentbodies. Numer-

ical results obtained by using the model were comparedwith those reported

for the experimental studies mentioned in the previous paragraph. Hana-

van's results were presented as a tabulation of the mass center locations

and momentsof inertia for 31 body positions.

1o5 Oneof the most intriguing and widely discussed problems in

animal motion is that of a cat which, when falling, is able to turn over

in mid-air so as to land on its feet. Marey [27] photographed a falling

cat in 1894, and whenhis photographs were shownto the French Academie

des Sciences, they evoked a discussion on whether an initial angular vel-

ocity was necessary in order to perform the righting maneuver. Guyou [28],

a physicist, gave an explanation of the phenomenonfor the case when the

angular momentumof the entire cat was at all times zero.

Guyouconsidered the cat as being composedof two rigid bodies which

were able to rotate relative to each other at the waist_ Each body had

a momentof inertia about the axis of rotation of value I when the legs

of that half of the body were extended and of value i when they were

pulled in toward the trunk. The respective an$1es of rotation of the

w and _ , and these quantities were related by the equa-bodies were

tion

w i
(1.5.1)

According to Guyou, the maneuver was initiated by extending the rear

legs and retracting the front ones. A twist at the waist produced a
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large rotation E1 of the front part and a smaller counterrotation ml

of the rear part. Then the front legs were extended, the rear ones re-

tracted, and the cat twisted back into its original position at the waist,

producing rotations w2 and _2 of the front and rear parts; the total

change in orientation was thus _ i - w2° This explanation, based on an

elementary understanding of mechanics, is the one most often given today;

see, for example, [29] and [30].

The next observer to study the falling cat in detail was Magnus, a

Dutch physiologist [31]. In 1922, he published a series of photographs

and a more detailed explanation of the righting maneuver° Magnuswas

concerned with reflexes r_ther than with the mechanics of the problem,

and he divided the maneuver into three distinct phases: rotation of the

head, rotation of the fore-body, and rotation of the rear part.

Rademakerand Ter Braak [32], after examining their own photographs

of a falling cat, proposed a newexplanation in 1935. According to these

authors the cat bends at the waist, and the front and rear parts then ro-

tate together, bringing the whole cat over at once° Their model con-

sisted of two identical circular cylinders connected at the waist. The

symmetry axes of the cylinders defined a plane. They showed (see Appen-

dix I), by angular momentumarguments, that if the cylinders rotate rela-

tive to the plane with equal rates, then the plane itself will also ro-

tate, the result being a turning-over of the whole model°

In 1955, McDonald [33,34,35] published results of an extensive study

in which he had photographed falling cats with a high-speed (1500 frames/

SeCo)motion picture camera° He described their motion generally in

terms of Guyou's explanation, but addedmanydetails seen in his observa-

tions_ In particular, McDonaldfound no evidence for either Magnus'

-7-



observation that the head rotates before the rest of the body, or for the

Rademaker-Ter Braak explanation which requires the front and rear parts

to rotate together. Dro McDonald also made some inertia measurements

on parts of a cat and, using (1.5.1), calculated that a rotation of 180

degrees of the fore-part could be attained by a counterrotation of six

degrees of the hind-parto This was confirmed by measurements taken from

his photographs. After photographing a tailless cat, he concluded that

the tail was not necessary for the maneuver, but it was sometimes useful

for fine adjustments or for stopping the rotation once the desired orien-

tation had been achieved° In addition, McDonald studied the role of the

eyes and the vestibular organ as orientation and motion sensors.

1.6 After studying attitude motions of a freely falling cat,

McDonald did the same for a man [36]. In one experiment, the subjects

were asked to jump from a one meter springboard and to attempt to perform

a rotation about a vertical (longitudinal) axis before reaching the water°

To ensure that the angular motion was not obtained from the push-off,

they were told the direction in which to turn after they left the board.

It was found that a highly trained diver could make a full rotation in

either direction, but an untrained person could turn only 90 degrees at

most.

The subjects were also asked to try the "cat drop" maneuver. They

hung from the underside of a diving board by their hands and feet. On

command, they let go and attempted to turn over, landing face down with

their hands and feet entering the water first. The trained diver was

successful at the "cat drop"; the others were not.

Whitsett [37] considered the motion of a space worker (consisting of
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a single "weightless" body) whensubjected to the action of forces re-

suiting from thrust misalignment or from the application of a torque to

a fixed handle. The space worker's propulsion system produces a force

which is applied near the worker's mass center. Thrust misalignment, due

to the force not passing exactly through the mass center, causes unwanted

rotational motion. Whitsett studied this motion, but he considered only

misalignments which produce a torque about a principal axis of the body.

In practice, thrust misalignments will not be aligned with the principal

axes° Hence, Whitsett considered only a special case of this problem.

Tieber and Lindemuth [38] studied the motion of an astronaut, con-

sidered as a single rigid body, when he is using a Modular Maneuvering

Unit. This device consists of twelve gas jets, a fuel supply, and con-

trois which enable the astronaut to maneuverhimself while outside his

spacecraft°

Several workers have studied the attitude motion of an astronaut in

free fall, taking into account motions of parts of the body relative to

one another° McCrankand Seger [39] considered the humanbody to be com-

posed of nine connected rigid bodies (a trunk-head and four limbs of two

parts each). They developed a procedure for writing equations of motion

for an n-body system in free fall and applied the procedure to their

nine body system° The resulting differential equations of motion were

quite complex, and no general conclusions were drawn. However, some

numerical integrations for specific cases were presented.

The problem of the reorientation of a humanbeing in free fall due

to movementof the limbs was studied by Kulwicki, Schlei, and Vergamini

[40] in the U.SoAoand by Stephantsov, Yeremin, and Alekperov [41] in

_



the U.S.S.R. The theoretical basis for both reports was the same; name-

ly, the equation T = I _ , where the angular acceleration _ is assumed

to be the second derivative of an angle e, was integrated twice to give

a relationship essentially the same as (1o5.1). This relationship was

referred to by both sets of authors in order to "prove" that each of sev-

eral specific maneuvers would result in a reorientation. In some cases,

it was not clear how the "theory" related to the proposed maneuvers (e.g.,

the pinwheel, p. 9 of Kulwicki). In addition, the analysis was based on

some assumptions which were not discussed by the authors and which were

violated to some extent in all of the proposed maneuvers. For instance,

T = I _ and the expression of _ as the second derivative of e are

valid for planar motion only (see the bend and twist, Kulwicki, p. 6, for

a violation of the planar motion hypothesis)° More subtle is the fact

that T = I _ is based on the angular momentum principle and is valid

only when the axis of rotation of each of the bodies is either inertially

fixed (not generally true for freely falling bodies) or passes through

the mass center of the system (true only in special cases of symmetry)_

For example, the statement "If the subject exerts muscular force and

turns the body part A through an angle a, in unit time, then the other

part of the body, according to the Third Law of Mechanics, turns in the

opposite direction .... " (Stepantsov, p. 5) is not always true (refer to

Section 3.3 of the present work for an example). The third failing of

this analysis is that it takes no account of the reorientations caused

by certain intermediate parts of the maneuver, during which the moments

of inertia of the two parts are changed (e.g., steps 3 and 5 of the bend

and twist, p. 6 of Kulwicki).
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The shortcomings of the analysis cast varying amounts of doubt on

the conclusions reached for each of the proposed maneuvers. Twomethods

are available for testing these conclusions: experimental verification

or a more thorough analysis. Stepantsov et al. tested their conclusions

experimentally on a low friction platform and on a trampoline and sug-

gested that certain maneuversalso be tried in an aircraft flying in a

Kepler orbit. Kulwicki et al. did not verify their conclusions, but also

suggested verification in an aircraft. (The present author has found by

personal correspondence that a test program involving all nine of the

proposed maneuverswas carried out, but that no report was published.)

However, experimental verification has its disadvantages: a frictionless

platform, or Zhukovskiy bench, as it is called, does not by any means

furnish a free fall condition; the trampoline allows very little time

for the maneuverand the initial conditions are uncertain; and aircraft

flights are both expensive and time consuming. It is one of the purposes

of this dissertation to perform more thorough analysis and thus to reduce

the need for experimental verification.

2. Problem Statement

2.1 For purposes of the present analysis, the human body is re-

garded as a collection of rigid bodies which are connected to each other

at joints that allow some amount of relative rotational motion. The bo-

dies are known collectively as the system or model. One body of the sys-

tem is designated the main body, and its orientation with respect to an

inertial reference frame is specified in terms of three quantities,

called external variables. The orientations of the bodies with respect
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to each other dependon certain angles, called internal variables. The

state of the system is known when both the internal and external variables

are known. The system is said to be in "free fall" when it is subject to

the action of no external forces other than a gravitational force applied

at the mass center. During free fall, rotational motions of the system

are unaffected by translational motions of the mass center. Consequently,

the dynamical relationship between internal and external variables depends

solely on the initial angular velocities of the bodies.

2.2 The relationship between internal and external variables may be

examined by reference to two problems. In one of these, hereafter called

the First Problem, the internal variables are specified as functions of

time, and the equations of motion are solved as an initial value problem

to determine the time dependence of the external variables. The effect

of initial conditions is eliminated by always starting with all bodies at

rest so far as rotational motion is concerned. The First Problem is exa-

mined in Chapter II, where solutions are obtained for several models.

Chapter III is devoted to the Second Problem, which consists of de-

termining a time history of the internal variables such that the system

moves from a specified initial state of rest to a specified final state.

This problem does not necessarily possess a solution; i.e., some final

states may be unattainable. On the other hand, there may exist more than

one solutiono
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II. THEFIRST PROBLEM

3. Two Bodies in Planar Motion

3.1 Consider a system, S, composed of two bodies, B0 and BI,

which are constrained to move in a plane. B0 and B I are connected by

a hinge at 0, the axis of the hinge being normal to the plane of motion.

The masses of B0 and B I are m 0 and ml, respectively, and the mo-

ments of inertia of B0 and BI about axes passing through the respec-

tive mass centers, CO and CI, and normal to the plane of motion are

I0 and II. Finally, the internal variable _ and the external vari-

able _ are defined as indicated in Fig. 3.1.

B I



3.2 Equations of motion, in this section as well as later, are ob-

tained by use of the angular momentumprinciple. As was pointed out in

the introduction, "free fall" will be taken to meanthat the resultant

of all forces acting on the system passes through the mass center of the

system. It then follows from the angular momentumprinciple that the

angular momentumof the system with respect to the mass center remains

constant in an inertial reference frame.

For two reasons, it is assumedthat the system is initially at rest:

firstly, this simplifies the equations of motion because the external

variables need not enter the equations explicitly (cf. (5.2.9)-(5.2.11));

secondly, since the external variables depend on initial conditions as

well as on the internal variables, the relationship between the two sets

of variables is simplified when the motion starts from rest.

The angular momentum, AS/C*, of S with respect to C*, the mass

center of S, is composedof four terms:

AS/C. AB0/C0 /C* BI/C I 21/C*= + ACO + A + (3.2.1)

B0/C 0

where A is the angular momentum of B0 with respect to CO;

C0/C*
is the angular momentum with respect to C* of a particle of

BI/C I CI/C*

mass m 0 situated at CO; and A and A are defined like-

wise. The first and third terms of (3.2.1) are given by_

B0/C 0 BI/C I

= - _ I0 _ , A = -(_ + _) II _ (3.2.2)

whereas the second and fourth terms may be written

A dot above a scalar quantity denotes differentiation with respect to

time_ The symbol d/dt, when applied to a vector, signifies differen-

tiation in an inertial reference frame.
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C0/C* d CIIC* d
A = r 0 x m0 _ r 0 , A = r I x mI _ r I (3.2.3)

where _0 and _i are the position vectors of CO and CI relative

to C*:

mI m0
r0 = m0 + mI (a0 J0 - al Jl ) ' rl --m 0 + m I (al Jl - a0 J0 )

(3.2.4)

All vector quantities in (3.2.1) through (3.2.4) may be expressed in

terms of unit vectors fixed in the main body, B0, by use of the substi-

tutions

i I = cos q0 i 0 - sin _ _ , Jl = sin _0i 0 + cos _0_0 (3..2.5)

Use of (3.2.2) through (3.2.5) in (3.2.1) results in the following

expression for the angular momentum of S relative to C*:

mom I

AS/C* =-{LIo + I I + m0 +m I

2 2

(a0 + a I - 2a0a I cos q0)J

m0ml 2 _$}
+ E11 +m0 + ml (aI - a0a I cos _) k (3.2.6)

Equating this expression to zero yields the differential equation of

motion _"

2 2
[(m 0 ÷ ml)(l 0 + Ii) + m0m I (a0 + aI - 2 a0a I cos q0)] _'

2

= - [(m 0 + ml) I I + m0m I (aI - aoa I cos _0)] q0' (3.2.7)

Time t has been removed from (3.2.7) by introducing a new independ-

ent variable T = t/T where T is the time required for the complete

maneuver; primes denote differentiation with respect to _. This sub-

stitution is made here, as well as later, in order to eliminate t

from solutions of equations of motion and to standardize the duration

of the maneuver.
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which may be integrated over the duration of the maneuver, 0 < T < i,

to give

- =- ,I

_0

a + cos _0 dq0
b + 2 cos q0

where

(m0 + m I) 11 a I

m 0 m I a0 a I a0

(3.2.8)

and

b (m0 + ml) (I0 + II) a0 al= - (3.2.9)
m 0 m I a0 a I a I a0

_0 = _(0) , _0 = _(0) (3.2.10)

As b < -2, the integration indicated in (3.2.8) yields

_(i) - _ = [- _2 + b - 2a tan-i - 4+ 2 tan (3.2.11)

0 _b 2- 4 q00

3.3 When B0 and

the ends, the quantities

B I are taken to be uniform thin rods joined at

a and b may be expressed solely in terms of

the ratio of the lengths a0 and al:

2

4a,,(a o)3 a 0 3

-2

la_) al-I {al_2, 4< 0),b = - _ - _ 3 a0 3 \a0/
(3.3.1)

The relationship between the internal variable q0 and the external

variable _ may be explored by starting with the initial conditions

16 -



_0 = _0 = 0 and plotting the final values _(i) vs. _(i) for various

ratios of the lengths. Such a plot is given in Fig. 3.3a. Onecharac-

teristic of this graph is of particular interest: for somelength ratios,
al 3

e.g., a0 i0 ' the angles _ and _ , when starting from zero, both
increase positively over someinterval. In other words, the system main-

tains a zero-valued angular momentum,in this instance, whenboth rods

are rotating in the samesense. Fig. 3.3b illustrates the motion of S

relative to C* when al 3
a0 - i--O by showing S in initial, intermediate,

and final positions.

40°

35e

30°

25°

20°

15°

5 °

a I
-- = 1

a0

al i

a0 i0

al 7

a 0 1

a 1

a 0

0 30° 60 ° 90 ° 120 ° 150 ° 180°

cp

Fig. 3.3a
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trajectory of

end of B 0

trajectory _ _I

of C 0 __

trajectory of

end of B I

trajectory

of 0

Fig. 3.3b
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4. Three Bodies in Planar Motion

4.1 The system, S, is an extension of the one examined in the last

section: _ three bodies are connected by two hinges and are constrained

to move in a plane which is perpendicular to the hinge axes. The main

body, B0, is connected to each of the other two, B I and B2, by hin-

ges located at 01 and 02 , respectively. The bodies have masses m0,

ml, and m 2 (whose sum is m, the mass of S) and moments of inertia I0,

Ii, and 12 about axes normal to the plane of motion and passing through

the respective mass centers CO, CI, and C 2. The two internal variables

are _ and _, the external one being _ as shown in Fig 4.1.

4.2 The equation of motion is obtained, as before, by computing

the angular momentum of S relative to C*, the mass center of S, and

then setting the result equal to zero.

The angular momentum may be expressed as the sum of six terms:

AS/C * AB0/C0 ABI/CI AB2/C2 AC0/C* 21/C* C2/C*= + + + + _ ÷ A (4.2.1)

Of these, the first three deal with motions of the three bodies relative

to their respective mass centers, and the last three are associated with

motions of the mass centers. The first term of (4.2.1) is, for example,

B0/C0 o
= - _ I0 _ (4°2.2)

and the fourth term is

C0/C* d

= _0 x m 0 _!0 (4.2.3)

The symbol S now has a meaning different from that in Section 3;

all symbols are defined anew in each section.
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B2

B
0

Fig. 4. i

i I

where r 0 is the position vector of CO relative to C*.

By letting r denote the position vector of 01 relative to C*,

r 0 may be written as r + a0 J0 ' and similarly, the positions of CI

and C2 may be expressed as the sum of r and vectors fixed in the bo-

dies. The vector r may be computed by expressing the position of C*

relative to 01 in two different ways and equating them:

i

- r a0 J0 + ml al m2 (b0- = m Ira0 Jl + J0 - a2 J2 )] (4o2o4)
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The angular momentumof S relative to C* may be expressed as

AS/C* i_ =-_ (hI _ + h2 _- h _) k (4.2.5)
m

where

hI = - mI m2 m aI a2 cos (_ -_ _) + mI m aI (m0 a0 + m2 b0) cos q0

2 2
- m I I - mI m(m0 + m2) aI

h2 = mI m2 m aI a2 cos (_ + _) - m2 m a2[(m0 + ml) b0

- m0 a0] cos @+ m2 12 + m2 m (m0 + ml) a_

h = 2 mI m2 m aI a2 cos (%0+ @) - 2 mI m aI (m0 a0 + m2 b0) cos %0

- 2 m2 m a2 [(m0 + ml) b0 - m0 a0] cos @+ m2(l 0 + I I + 12)

2
+ 2 mI m2 m aI a2 + m0 (mI aI + m2 a2) + m0[(mI + m2) a0

2
_ m2 b0] + ml[(m0 + m2) al _ m2 a212 + ml(m0 a0 + m2 b0)2

_ _ 2
+ m2[(m0 + ml) a2 mI al ]2 + m2[(m0 + ml)b 0 m0 a0] (4.2.6)

From (4.2.5), the equation of motion is

fl _' + f2 _' - _' = 0 (4.2.7)

where fl and f2 are defined by reference to (4.2.6):

hI h2
fl = fl (_' _) =_- ' f2 = f2 (_' _) =h'- (4.2.8)

Only eight of the ten quantities (exclusive of _ and _) which enter

into (4.2.6) are necessary to determine the motion. Consequently,

eight dimensionless parameters are introduced:
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I 0 I I 12
H0 - 2 ' HI = 2 ' H2 = 2

m b0 m b0 m b0

a0 aI a2 mI m2
PO= _0 ' Pl - b0 ' P2 = _0 ' nl =--m ' n2 =--m

(4.2.9)

4.3 A comparison of (3.2.7) and (4.2.7) reveals a fundamental dif-

ference. In view of (3.2.8), the solution of (3.2.7) may be expressed

as _(1)

_(i) - _0 = ,Ii_ f(_) d_ (4.3.1)

0

Likewise, (4.2.7) implies that

_(1) o_(1)= f2(_, 4) d_ (4.3.2)
_(i) - _0 _0 fl(_, 4) d_ +- J_0

Now, the right-hand side of (4.3.1) is expressed as a quadrature, and it

follows that the value of _(i) _0 depends only on _0 and _(i). In

particular, if _(I) equals _0' then _0 and _(i) must be equal,

which means that if the internal variable returns to its original value,

then the external variable must do likewise. In contrast, the right-

hand side of (4.3.2) has not been reduced to quadratures, each integral

containing a variable in addition to the integration variable. Since

this additional variable may take on different values throughout the

interval of integration, the value of the first integral in (4.3.2),

for example, depends not only on _0 and _(i), but also on the time

histories of both _ and _ . Thus, the values of the integrals are

not necessarily zero when the limits of integration are equal, and there

is now no guarantee that the external variables return to their original

values whenever all of the internal variables recover their initial values.
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4.4 The nature of the solutions of (4.2.7) may be studied by inte-

grating the equation numerically on a digital computer for several dif-

ferent time histories of ¢p and _. Specifically, a "standard" time

history containing several parameters may be used, the parameters being

varied in order to determine their effect on _.

The standard time history consists of portions in which the variable

remains constant and portions in which it changes according to the func-

tion

_ i 2_t_y(t) = Ya + (YB Ya) (T - _ sin --_-. (4.4.1)

where Ya and Yb are the values of y at the beginning and end of

the transition, the duration of which is T. As shownin Fig. 4.5a, the

standard time history has the following general form: it begins with a

certain initial value, changes to an intermediate value, and returns to

the initial value. Sevenparameters determine the exact shape of the

curve, these being the initial and intermediate values and the durations

of the two transitional and three constant portions of the history.

Twoproperties of (4.4.1) are noteworthy: the slope is zero at both

ends of the transition (ensuring that the motion starts from rest as sti-

pulated); and the second derivative (and thus the inertia force) is con-

tinuous throughout the history°

4.5 Numerical integration of (4.2°7) for a specific system reveals

properties of the solution which give somegeneral insight into the be-

havior of systems of connected rigid bodies in free fall. Supposing S

to consist of three identical uniform thin rods connected at the ends,

the dimensionless parameters (4.2.9) assumethe values
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i
H0 - 36

i
P0 =

i
nI =

i i
HI = 3-_ ' H2 = -_

i i
Pl = _ ' P2 =

i
, n_ =

I

If the internal variables are now restricted to values between 0 and 180

degrees, one can pose the following problem: with the stipulation that

the final values of the internal variables be the same as the initial

values, how must these variables be chosen so as to yield the largest

possible reorientation of the system? This problem is solved here by

first restricting the internal variables to functions which can be repre-

sented by the standard time history and then investigating the more gen-

eral case.

If _ and _ are prescribed by means of the standard time history,

then the reorientation is a function of the parameters used in the his-

tory, and the problem at hand is that of maximizing a function of several

variables. Because of the large number of parameters available in the

standard time history, it is difficult to determine the maximum reorienta-

tion with absolute certainty; but by integrating (4.2.7) a sufficient

number of times, each time using sets of parameters chosen on the basis

of the results of prior integrations, a maximum reorientation may be ob-

tained with a reasonable amount of confidence.

Fig. 4.5a shows time histories obtained by applying this procedure

to the problem under consideration. It may be seen that the internal

variables return to their original values, as required, whereas the ex-

ternal variable changes by about 104 degrees. These values, which ap-

pear to be optimal, are seen to be obtained by making full use of the
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allowable range of the internal variables, and it is worth noting both

that the range over which the external variable varies is larger than

the difference between the initial and final values of this variable,

and that the maximumreorientation is obtained by changing the internal

variables one at a time°

Figs. 4.5b and 4.5c illustrate the effects of the two basic types

of modification that can be madein the standard time history parameters.

As may be seen from Fig. 4.5b, reductions in the range of _ and

generally result in a large reduction in the reorientation; specifically,

if _ and _ , instead of closing to zero, only close to right angles,

the reorientation obtained is only 7.5 degrees. On the other hand, modi-

fications in the relative timing of _ and _ have relatively little

effect on the reorientation; this is illustrated in Fig. 4.5c in which

the transition in _ starts after only 20%(100%in Fig. 4.5a) of the

transition in _ has occurred and in which the reorientation is 74 de-

grees.

If the internal variables are not restricted to functions which can

be generated by use of the standard time history, it becomesmore diffi-

cult to determine the maximumreorientation, and it maybe shown that no

such maximumexists unless _ and _ are restricted in someway. In

fact, consider two periodic functions, Yl(t) and Y2(t), of a unit

period, and assumethat these satisfy the restrictions on _ and 4,

respectively, and yield a reorientation of amount _ of S; then Yl(nt)

and Y2(nt), where n is any positive integer, give rise to a reorienta-

tion of amount n _ which has no maximum.
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4.___6The constants in (4.2.7) can be chosen so that the model rep-

resents a human body. The reorientation maneuver can then be thought of

as similar to that performed by a person executing a jackknife dive.

In the present context, body B2 represents both arms acting as a

unit. The legs are represented by BI, and the remainder of the body,

ioeo, the trunk and the head, is represented by B0. Appropriate inertia

properties may be found by reference to data given for the fiftieth per-

centile of the United States Air Force flying population (or, more simply,

the Air Force mean man) by Hanavan [25,26], which leads to

m = 161o9/32o2 slug = 7.34 x 104 gm

m I = 53.0/32.2 slug = 2o41 x 104 gm

m 2 = 18.4/32°2 slug = 8.36 x 103 gm

a0 = 10o5/12 ft = 26.7 cm

a I = 16.3/12 ft = 41.4 cm

a2 = 10o4/12 ft = 26.4 cm

b0 = 20.5/12 ft = 52.1 cm

I0 = 1.56 x 104/(32o2 x 144) slug - ft2 = 4.57 x 107 gm - cm 2

II = 4.65 x 103/(32o2 x 144) slug - ft2 = 1.36 x 107 gm - cm 2

= 2
12 1o13 x 103/(32.2 x 144) slug - ft2 = 3.31 x 106 gm - cm

The associated dimensionless parameters, (4.2.9), are

H 0 = .229 , HI = °0684

P0 = o512 , Pl = .795

n I = °327 , n 2 = o114

, H 2 = .0166

' P2 = .507

Consider a maneuver in which the internal variables change one at a

time according to the standard time history. In accordance with standard

diving form, the maneuver begins and ends with the body in the "open"
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position, i.e., _ = 4 = 180°, and the movementsof the legs precede

those of the arms. Twoparameters, _* and 4" , the intermediate

values of _ and 4, remain to be chosen. Fig. 4.6 gives the reorien-

tation obtained for various values of _* and 4" which are physically

160

140

120

i00

4"

80

Degrees

_0

40

20

o
Degree_

-5

-40

-45
0
0 40 60 80 i00 120 140 160

_* - Degrees

Fig. 4.6

attainable. Figure 14-2 of reference [42] shows that a champion diver

attains a position corresponding to q_ = 50 o , 4" = 90 ° , and the asso-

ciated reorientation, from Fig. 4.6, is about -19 degrees. The discrep-

ancy between the diver's actual reorientation of +180 degrees and the

predicted reorientation of -19 degrees is due to the diver not starting

from rest as assumed in the analysis. One can see that a diver's angular

momentum is indeed nonzero by comparing Figures 14-2 and 15-2 of ref-

erence [42].

- 28 -



5. Two Bodies in General Motion

5.1 A system, S, composed of two bodies, B0 and BI, of mass m 0

and ml, is considered in this section. The bodies have moments of in-

ertia I0' J0' K0 and Ii' Jl' KI with respect to the principal axes

X0' Y0' Z0 and XI' YI' ZI passing through the respective mass centers

CO and C I. As illustrated in Fig. 5.1, B0 and BI are connected by

a ball and socket joint at a point 0. This point is separated from the

X0

ZI

k I

i0 _i

J0

Y0 0

XI

YI

BI

Fig. 5.1

two mass centers by distances a0 and al, and the direction cosines

of C00 and CIO are d0' 90' Y0 and _i' 91' _i' respectively. The

orientation of the principal axes of BI relative to those of B0 de-

pends on three internal variables, _, _, and 0, these being two-axis

Euler angles measured about the "Z", "X", and "Z" axes, respectively
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(see Appendix 2). Instead of using the external variables,

_, in obtaining the equations of motion, the motion of B0

terms of the angular rates w_I)- w(2) and w!3)-in
' O ' UU

_, _, and

is expressed

5.2 The equations of motion are obtained by computing the angular

momentum of S with respect to the mass center, C*, of S and setting

the scalar products of this quantity with three mutually perpendicular

unit vectors equal to zero:

Now,

As/c* .i0 : 0 , As/c* • l0 = 0 , As/c* • k0 : 0 (5.2.1)

AS/C* AB0/C0 ABI/CI AC0/C* CI/C*: + + + A (5.2.2)

where

Bo/Co w l) (2) w 3)A = I0 i0 + J0 w0 J0 + K0 k0 (5.2.3)

 l/Cl (2)A = Ii il + Jl Wl Jl + KI kl (5.2.4)

C0/C* d

A = r 0 x m 0 _ r 0 (5.2.5)

CI/C* d

A = r I x m I _ r I (5.2.6)

The vectors _O and !l denote the position of CO and CI, respec-

tively, relative to C*:

r

--0

r I =

m I

m 0 + m I [al(C_l il + 81 Jl + 71 kl) - a0(c_0 i0 + 80 l0 + Y0 _0 )]

m o

m 0 + m I
[ao(_oio + 80 lo + _o z0) -

(5.2.7)

al(al il + 81 Jl + _I el)]

(5.2.8)
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Equations (5.2°2) - (5.2.8) together with the expressions for the

angular rates of BI relative to B0, (A-2o2), and the relations be-

tween the two sets of unit vectors, (A-2.1), given in Appendix 2 are

sufficient for the determination of the equations of motion° These

equations are_

[H_I) + D2_0 + D3_0 + Ell(C_Ce - c_sq0se)+El2(- sec_ c_cesqo)

+ El3S_Sqo]WO(1)+ [- D2d0 + Ell(CeS_0+ c_sec_) + El2(-SeS_ +
c _CeC_o)

(2) + [_ D3d0 + E1 + + E1 ] w_3)- El3S_C _] w0 isis e El2S_Ce 3c_

= [-EllSeS _ - El2CeS _ - El3C _] _ + [-EllC e + El2S e] _ - EI3e (5.2.9)

+ - + - w0(1)[-DI_ 0 E21(c_c e c_s_ose) E22(- sect0 c_ces_0) + E23s_s_]

+ [H_ 2) + D3_ 0 ÷ Did o + E21(CeS_0 + C_SeCqo) + E22(- ses _ + c_cec _)

(2) + [_ + E21s + + (3)E23s_cq0 ] w0 D3_ 0 _s e E22s_c 0 E23c _] w0

o

= [-E21ses _ - E22ces _ - E23c _] q0 + [-E21c e ÷ E22se] _ - E23 e (5.2.10)

[_DiY0 + E31(c0c e _ c_sq0se) + E32( - secq0 _ c_ces0) + E33s_sq0 ] _i)

+ [-D2Y 0 + E31(ces _ + c_sec ?) + E32(-SeSqo + c_cec_o)- E33s_c_0] w_ 2)

+ [H_ 3) + Did o + D2_ 0 + E31s_s e + mB2s_c e + E33c _] w0(3)

o i

= [- E31ses _ - E32ces _ - E33c_] qo + [- E31c e + E32se] _ - E33 e (5.2.11)

The lower case letters s and c denote sine and cosine functions,

e.g., c = cos _.
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where

D2

DI = d0 - p_l(CeC - c_s@s) - p_l (- sec_ -

= BO- paI (cSs + c_sec_) - Pill (- s_s

= _0 - P_iS_Se- PBIS_c@- PNIC_D3

and

= H_I)Ell (cec_

- Bls_c_]

H_ 2)El2 = - (SeC _

+ _ls_c_]

(3) s_sEl3 = H I

+ _l(ses_ - c_cec_)]

H_ I) +E21 = (cgs _ c_s@c )

÷ DIP(- 71s_c0 + BIC _)

c_sescp) + D2P(_is@c8 - 81c@) + D3P[_fl(S0S%o

+ c@c@s_o) + D2P(-71s_s @ + OllC_) + D3P [_{l(CfSqo

+ D2P(_is_s@ - OilS_C@) - D3P[Bl(c@s_o + c@ssccp)

D3P[7l(S@C _ + c@ces _) + _is_s_]

E22 = HI(2) (_ sesq° + c_ceCqo) + D3P[_l (_ c0cq + c_S0Sp ) + _is_S%o]

+ DlP(_flS_S@ - alC _)

(3) + D3P[_l _ + o_I -i-c ]E23 =" H I s_c_o (cOc_o c_sss_o) (s@cqo _ces q)

+ DIP(-_IS_S@ + _is_c@)

(5.2.1z)

+ c _SeCo)
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E31 = H_ 1) s_s 8 + DIP[TI(- sos _ + c_c8c£0) + 81s@c£0] + D2P[TI(SsC£0

+ c_cesqo) + _ts_s£o]

= H_ 2) s_c 0 [Yl(CeS£o + c + + [_'1E32 - DiP _SeC _) _is_c£0 ] D2P (cOc_0

- c_ses_p) - OllS_So]

(3) c_ + Dip[a t + + - ]E33 = H I (cOs _ c@soc _) _l(SoS£0 c@coc£0)

D2P[_I(CsC£0 - c_sos_) + _l(SoC_0 + c_c8s£0) ]

and where

(5.2.13)

a 1
p =

a 0

H! l) =
1

li(m 0 + m I)

2

a0m0ml

H(2)

1

Ji(m0 + m 1)

2

a0m0m I

H(3) Ki(m0 + ml)
i = 2 , i = 0,l (5.2.14)

a0m0ml

When using (5.2.9)-(5.2.11), the angular rates w_ I), w_ 2), and w(3)

may be expressed in terms of the external variables g, ?], and _ by

using the appropriate kinematical equations in Appendix 2.

5.___3The equations above apply to a general two-body system. For

two uniform thin rods connected at their ends, the constants in the

equations have the values
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d0 = _i = - i , _0 = BI = _0 = 71 = 0

2

H_I) = H_I) = 0 , _0"(2) = H_3) = 3-_i(I + p) , H_ 2)= H_ 3)= P---(l+P)3

(5.3.1)

which depend only on p, the length ratio of the rods. In addition,

suppose that the restriction _ = - 90 ° is placed on the relative motion.

Equations (5.2.9) (5.2.13) now reduce to

where

and

+ w_ I) - w0(2)- (El2SeCqo E13s%o) - (- D 2 + El2S@S%o E13c%o )

(3) " "
(- D 3 + E12c8) w0 - El2C o qo + El3 @ = 0 (5.3.2)

- + + + w0(2)(Em2SsC%0 EegSq0 ) w_ I) (H_ 2) D I - m22s@s_0 E23c_0)

E22 cew0(3) (5 3.3)- E22c e q0 + E23 @ = 0

w(I) _ W0(2)
- (E32secq0 + E33sq0 ) 0 (E32s(gs%o E33c%0 )

+(Ho(2 )_ DI - E32c8) _3)_ E32c@ %0'+ E33 @ = 0 (5.3.4)

D I = - i + p c8c

D 2 = p c@s

D 3 = - p s@
(5.3.5)

= (2) sSc%0 + P D3 cq0El2 - H I

= _ H_ 2) s%0 P D2c e + p D3ses _El3
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E22 = _ H_2) sSs_ + P D3s

(2)
E23 = H 1 c - p D 3 s@c + p DlC @

= - H_ 2) c@ p DlC _ p D2s _E32 - _

E33 = - p DlSsS _ + p D2ssc _ (5.3.6)

The possible relative motions of the rods under the restriction

= -90 ° may be understood more easily by imagining a set of mutually

perpendicular axes oriented such that U 2 is directed along _I' U3

along _, and U I along _i x_. As shown in Fig. 5.3, B0 rotates

U 3

k 0

U 2

Fig. 5.3

about U 3 and

and U I are

in which

B I rotates about U2, and the angles between the rods

and @, respectively.

Let the rods be of equal length, and consider a four-part maneuver

and 8 change successively, as follows: _ increases from
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zero to a value q_; next, 0 increases from zero to 0*; and _ and

0 then individually return to zero.

Numerical integration of (5.3.2) - (5.3.4), using the standard time

history for _ and 0, leads to results which suggest that the reorien-

tation of the system is independent of _* and 0*. Specifically, it

is found that, when _* and 0" both have the values 30, 60, 90, 120,

and 150 degrees, the reorientation of the system is equivalent to a 90

degree rotation about the initial UI axis. For _* = 0" = 90° , valid-

ity of this conclusion may be established by means of the following ar-

gument: when _ opens to 90 degrees, B0 becomesparallel to U2; con-

sequently, as e opens, the rotation about U2 results only in a rota-

tion of B0 about its axis, since B0 has no momentof inertia about

its axis; as _ closes, BI likewise rotates 90 degrees about its

axis; these rotations of the bodies about their axes account for the 90

degree reorientation. (Onenumerical integration of (5.2.9) - (5.2.11)

for identical uniform thin rods and _ _ -30° was attempted, and it

yielded a reorientation equivalent to a 30 degree rotation about the

initial X0 axis, suggesting that the amount of reorientation is equal

to the value of 4.)

When q_ and 0*, are small, the 90 degree reorientation may be

demonstrated by linearization of (5.3.2) - (5.3.4) in _, 0, _, and 0;

for p = i this yields

- _ w_2) * 0 w_3) = 0 (5.3.7)

•- _w 1) + 2 w 2) =_ e (5.3.8)

•0 w i) + 2 _ 3) = _ _ (5.3.9)
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(2) and w_3)The latter two of these show that w0 are small whenever

_0, 8, _0, and 8 are small. Solution of (5.3.7) - (5.3.9) leads to

w(1) = _e - e_
o

2 e2_ +

(5.3.i0)

which may be integrated over a four-part maneuver to give the total re-

orientation of the system. The reorientation, _i' associated with the

w_I)- resulting from the first part of the maneuver is zero,value of

since @ and e are zero. Similarly, the reorientation during the

fourth part, _4' is zero. Supposing that e increases linearly, i.e.,

0*
0 =T- t , where T is the time required for the second part of the ma-

neuver, one may compute _2 by integrating (5.3.10):

_T _*e*/T -1 e*
_2 = 0 _.2 + (_-- t)28. dt = tan --q. (5.3.11)

Likewise, if _ decreases linearly from _*, and T represents the

duration of the third part of the maneuver, then

I_ _*8*/T dt = 8*T 0
_3 = , _.2(i - T)2 + 8.2 -_ J'

-T

d o = tan-i 8_. (5.3.12)
o 2 + (e*T/_*)2

where o = t - T. The total reorientation is thus

_2 + _3 tan-i 8* i _* 900= _+ tan- 8" = (5.3.13)

Hence, the 90 degree reorientation holds for any small, nonzero values

of q* and e*.

The system under consideration has the interesting property of

responding with large reorientations to small changes in the internal

variables. In the next section, an attempt is made to modify the system

so as to obtain a model satisfactorily representing the human body while
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retaining this property. This involves making three changes: a third

body, representing the humantrunk, is introduced; a distance is added

between the hinge points at the ends of the rods, the rods playing the

parts of arms or legs; and allowance is made for the momentsof inertia

of the rods about their axes of symmetry.

6. Three Bodies in General Motion

6.1 Consider a system, S, composed of a main body,

are attached by means of hinges two identical bodies BI

BO, to which

and B 2 . Unit

vectors _i' _i' _i' i = 0, i, 2, are aligned with the principal axes

of the bodies, and, in addition, unit vectors _, _, _ are fixed in B0

such that _ and _ are parallel to the hinge axes passing through O I

and 02, respectively, as shown in Fig. 6.1. Bodies BI and B 2 each

B

2b0

.21

C o

O2

c 2

B

.w ,2

i

Fig. 6.1
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have mass mI and principal momentsof inertia Ii, II, and KI, for

their mass centers CI and C2, and B0 has mass m0 and principal

momentsof inertia I0' Jo' and K0 for the mass center CO. The in-

ternal variables are _ and

ternal variables _, _, and

in terms of the angular rates

and k.

_; however, instead of employing the ex-

directly, the motion of B0 is expressed

w(I), w (2), and w (3) referred to _, _,

6.____2Equations of motion are obtained by equating to zero the

angular momentum,

A S/C* = A B0/C0 + ABI/CI + A B2/C2 + AC0/C* + ACI/C* + AC2/C*
(6.2.1)

of S with respect to C*, the mass center of S. The first three

terms of (6.2.1) are

AB01Co
(2)= 10 + J0 J0 + K0

BiICl l o 2> o 3>_A = Ii + Ii -J-1+ K1 --kl

B2/C2 w_l) (2) + KI W_3) k2A = Ii i2 + Ii _2 J2 (6.2.2)

and the last three are

C0/C* d

= m 0 _ - a0 k0 ) x _-_ _ - a0 _0 )

CI/C*
A

d

= ml _ - b0 J0 - al kl) x _-_ _ = b0 _ - aI kl)

C2/C* d

= ml_ + b_0 - al_2) x _ _ + bo_ 0 = alk2) (6.2.3)

where _ is the position vector of 0 relative to C*:

m0a 0 mla I

= m 0 + 2m I _0 ÷ m 0 + 2m I (_i + _2 ) (6.2.4)
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The following relationships are useful for expressing all quantities in

(6.2.2) and (6.2.3) in terms of a commonset of unit vectors and angular

rates:

= c i - s k , j = j , k0 = s i + c ki0 _-- _-- 0 _- _-

i I = i , Jl = c%0 j - s k , k I = s j + c k- _- _ _-

i2 = c_i+ s_ k , J2 = J , k2 = -s_i + c_k
(6.2.5)

_i) w(1) m(3) _2) w(2) _3) w(1) w(3)W = C - S _ = W = S /- C

= - _ W (2) s W (3) W_ 3)= s W(2)+ c W (3)W i) m(1) 9O , W 2)= c - _ ' q0

w_l)= C_W(1)+ s_W(3), W_2)= W(2)_ _ , W2(3)__ -s_(1)+ c_W(3) (6.2.6)

Eight dimensionless parameters are required to define the system:

H_I) I0 , H0(2)= J0 (3)_ K0
- ma0a I ma0a I ' H 0 - ma0a I

H_I)= Ii , H_ 3)= KI
ma0a I ma0a I

aI b0

Pl = -- ' P2 =a0 T0
m 0

, n = -- (6.2.7)

m I

where m is the mass of S:

m = m 0 + 2m I (6.2.8)

It is convenient to introduce three additional quantities:

2
n i n + 2n + 2

no =-- n I =-- n 2 = (6.2.9)n+2 ' n+2 ' 2
n + 4n + 4

The equations of motion, obtained by carrying out the operations

indicated in (6.2.1) - (6.2.3), making use of (6.2.4) (6.2.9), and
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simplifying, maybe written as follows:

where

AlW(1)+ A2w(2)+ A3w(3)= (, E1 + D2) _ - El9S_

3)=
A4m(1)+ A5_(2)+ A6_( El3S _ _ - tE 1 - D3)

A7w(1)+ A8_(2)÷ A9w(3)= El3C_ _ ÷ El9C _

(6.2.io)

46.2.11)

(6° 2.12)

= D I + E 2 - E 1 + E6c _A I

A 2 = E9s _ - El9S _

A 3 = E7c _ ÷ EloS _

A4 = E 3 + El3S_

A 5 = D I + E4 + EllC _ + El4S_

A 6 = E 5 + El2C_ + El5S _

+ EsS _ + El6C _ El8S_

A 7 = -E6s + EsC _ + + +El3C_ El6S_ El8C _

A 8 = E9c _ - EllS_ + El4C _ + El9C _

A 9 = D I + E 2 - E7s _ + EI0C _ - El2S_ + ElsC _ + El7S _ + E20c_ (6.2.13)

D I = 2n I {n0nlP I -n o [cq0e_ * c°s (_-_)]+ P2S_o -

2 2

D 2 = _ n0nlc_oc _ - nlPlC_C_ + nOnlP I ÷ nlP2S_o

2 2

D 3 = - n0n I cos (_) - nlPlC_C_ + n0nlP I
(6.2.14)

E 1 - H_ I)= _ nln2P I

2

E 2 = 2nlP2/p 1
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E 3 =- nlP2S _

E 4 = HO(2)÷ 2nonl/P I - nlP2S%o + H_I)+ nln2P I

E5 =nlP 2 (c_- cq))

E6 = (H_I)+ 2n0nl/P I) co/

E7 = - (H_ I) + 2nonl/Pl ) s

E8 = _ n0nls _ + H_3)sol

E 9 = n0nls _

El0 = n0n I (c + c@) + H_3)e

E11 = (H_I)+ nln2Pl) c

El 2 = - (H_I)+ nln2Pl) s

2

El3 = _ nlPlS_ + n0nls_

El4 nlP2 + (H_3)_ 2= _ n0nlPl) s

2 _ 2El 5 nlPlC _ + n0nlc _ + (H 3)_ c= n0nlP I)

El6 = (H_I)+ nln2Pl) c_

El 7 = (H_I)+ nln2Pl) s_

El8 nOnlS_ _ (H_3)_ 2 s_= n0nlP I)

2

El9 = nlPlS_ + nlP 2

2
2 (H_3)_ n0nlPE20 = n0nlc _ + nlPlC _ + i) c_
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6.3 The present system maybe used as a model of the humanbody in

two ways: either BI and B2 are the arms, and B0 is the remainder

of the body; or BI and B2 are the legs, and the remainder is B0.

the reorientation of the body due to motion of the arms is examined in

this subsection by solving (6.2.10) (6.2.12) numerically for several

prescribed motions of the arms; the sameprocedure is then followed in

the next subsection for the legs. The Algol computer program used for

this work is listed in Appendix 3.

The required anthropometric data are obtained from information

given by Hanavan [25,26] for the Air Force meanman:

m = 161.9/32.2 slug = 7.34 x 104 gm

mI = 9.2/32°2 slug = 4.18 x 103 gm

a0 = 17.8/12 ft = 45.2 cm

aI = 10.4/12 ft = 26.4 cm

b0 = 8.0/12 ft = 20.3 cm

I0 = 3.86 x 104/(32.2 x 144) slug - ft 2 = 1.13 x 108 gm- cm2

i0_/ 2J0 = 3.77 x (32.2 x 144) slug - ft 2 = I.i0 x 108 gm- cm

K0 = 1.92 x 103/(32o2 x 144) slug - ft 2 = 5.62 x 106 gm- cm2

I I = 565/(32°2 x 144) slug - ft 2 = 1.66 x 106 gm- cm2

= 2KI 14/(32.2 x 144) slug - ft 2 = 4.10 x 104 gm- cm

The dimensionless parameters defined in (6.2.7) have the values

HO(1)=1.287 , H_2)= 1.256 , H_3)= .0641

H_I)= .0188, H_3)= .00047

Pl = °584 ' P2 = °446 , n = 15o6
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In the maneuver to be considered, both arms are at the sides of the

body, i.e., _ = 4 = _ = 0, at the beginning and at the end of the motion;

and, as before, the maneuver takes place in four parts. The right arm

(BI) swings to the side to form an angle _* with the body; next, the

left arm swings forward to an angle 4*; finally, both arms return to the

sides of the body, the right arm moving first. The reorientation produced

by such a maneuver, expressed in terms of the three-axis Euler angles

(Appendix 2) _, _, and _ involving "eye," "shoulder," and "spine"

axes _ respectively depends on the values of _* and 4" as shownin

Fig. 6.3.

For given values of _* and _*, the reorientation may be found

from this plot by first locating the point which corresponds to these

values and then reading _ on the abscissa, _ on the ordinate, and

(which is generally smallest) on the field. As an example, consider

a maneuver in which the right arm swings to the side and the left one

swings forward, the two arms forming respective angles with the spine

axis of 90 degrees and 30 degrees, i.e., _* = 90° and _* = 30°° The

corresponding external variables, _ = .002° (approximately), _ = -_3°,

and _ = -2.6 ° , may be read from Fig° 6.3. (Note that the maneuver as-

sociated with _* = 150° and _* = 180° yield similar values of _ and

4, but a much larger value of _ than in the original case, namely

= .8°.) This reorientation may be thought of as a 2-1/2 degree right-

handed rotation about the "down" spine axis which itself rotates so that

the body "leans back" one third of a degree. As discussed in Appendix 2,

These terms are meant to suggest axes parallel to _0' _' and _0'
respectively.
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this interpretation of the reorientation, expressed as three-axis Euler

angles, is possible because the Euler angles themselves are small.

The angle _ determines the initial position of the arms in rela-

tion to the trunk. For example, _ = 90° places the arms in front of

the body, parallel to the eye axis, at the beginning of the maneuver.

Since the model considered in Section 5.3 produces a reorientation

equivalent to a rotation about the initial direction of the rods, and

since Fig. 6.3 shows that the reorientation is predominantly a rotation

about the spine axis when _ = 0, one might expect that the reorienta-

tion would be predominantly a rotation about the eye axis if _ = 90° •

However, numerical integrations for this case show that the reorienta-

tion is still essentially a rotation about the spine axis, apparently

because the momentsof inertia associated with this axis are muchsmaller

than those associated with the eye axis.

6.4 Onecan achieve larger reorientations about the spine axis by

moving the legs than by moving the arms. The three-body model maybe

used to demonstrate this by taking _ = 180° and setting

m = 161.9/32.2 slug = 7.34 x 104 gm

mI = 26.5/32.2 slug = 1.20 x 104 gm

a0 = 10.2/12 ft = 25.9 cm

aI = 16.3/12 ft = 41.4 cm

b0 = 3.0/12 ft = 7.6 cm

104/(32 2I0 = 1.16 x .2 x 144) slug - ft 2 = 3.40 x 107 gm - cm

J0 = 8.00 x 103/(32.2 x 144) slug - ft 2 = 2.34 x 107 gm - cm2

K0 = 2.43 x 103/(32.2 x 144) slug - ft 2 = 7.12 x 106 gm - cm2

= 2
I I = 2.32 x 103/(32.2 x 144) slug - ft 2 6.79 x 106 gm - cm

KI = 100/(32.2 x 144) slug - ft 2 = 2.93 x 105 gm - cm2
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The eight dimensionless parameters (6.2.7) are

H(I)= .431
0

(i)_ .0864HI -

Pl = i. 60

HO(2)=.297, HO(3)=.0903

, H_3)= .00372

P2 = "294 , n = 4.12

Themaneuver commenceswith both legs down (_ = 4 = 0), and takes

place in four parts: the right leg swings outward to _*; the left leg

swings forward to 4*; the right leg returns to its initial position;

and the left leg returns to the initial position. The reorientation of

the system is measuredby meansof the three-axis Euler angles _, _,

and _, whose dependenceon _* and 4" is illustrated in Fig. 6.4.

By comparing this plot with Fig. 6.3, one can see that use of the legs

results in reorientations which are not only larger, but which also

are more nearly equivalent to pure rotations about a spine axis, even

though _* and 4" are here restricted to values smaller than those

used for the arm motions.
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III. THE SECOND PROBLEM

7. General Formulation and Method of Solution

7.1 The Second Problem, as explained in Section 2.2, is that of

finding a set of functions which, when used as internal variables, de-

scribe a maneuver in which the system moves from a specified initial

state to a specified final state. A general mathematical statement of

the Second Problem, as well as an outline of the method of solution, is

given in this section, and an example of the application of this material

to a specific problem is given in Section 8.

Equations of motion for a system composed of connected rigid bodies

which fall freely after starting from rest may be written

P (_) _, + Q _)-' = 0 (7.1.1)

where P and Q are, respectively, r x s and r x r matrices of co-

efficients; _ and _ are column vectors of internal and external vari-

ables, respectively; r is the number of external variables (r = i for

planar motion and r = 3 for general motion), and s is the number of

internal variables. To specify the initial (_ = 0) and final (T = i)

states of the system, 2(r + s) boundary conditions are required "_.

,(o) = % , ®(i) = %

_(o) = .__-'o ' _(1) =--_'n

(7.1.2)

The boundary value problem (7.1.1), (7.1.2) is underdetermined since the

i The reason for the choice of n as a subscript will become apparent

in Section 8.2.
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number of unknownsin (7.1.1) exceeds the number of equations. Conse-

quently, (7.1.1) and (7.1.2) cannot be expected to possess unique solu-

tions, or, expressed in terms of motions, there may exist more than one

sequence of relative motions of system components for which the system

moves from a specified initial state to a specified final state.

7.2 The underdetermined problem is solved by adding equations to

(7.1.1) in a numbersufficient to render the problem solvable by tech-

niques normally used on boundary value problems. The resulting system

of equations must not only be a determined system, but must also be of

order 2(r + s) so that (7.1.2) may be satisfied.

Additional equations are obtained by imposing the requirement that

the solution be optimal with respect to somecriterion. Specifically,

of all the solutions of (7.1.1) which satisfy (7.1.2), that one is

sought which renders J stationary, where

,i
J [_,h2] = I G (_,¢',__,_,'c') d_: (7.2.1)

'0

and where G is any desired function of its arguments.

The problem just stated is known in the calculus of variations as

a Lagrange problem or as a problem with nonholonomic constraints. (In

this context, (7.1.1) is called the constraint equation.) It is treated

extensively by Bliss [43], and there exist somemore recent accounts,

e.g., Akhiezer [44], which are more readable, but perhaps somewhat

superficial.

The Lagrange problem is solved by using the multiplier rule to gen-

erate the necessary additional equations. To this end, a function F

is defined as
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F (_,_',_,_') = G (_,_' _-') Q_',_,_ + A (P_ + ) (7.2.2)

where A , called the Lagrange multiplier, is a I x r matrix; and F

is required to satisfy the Euler equations

d _F _F
dr _i' _Yi

= 0 (7.2.3)

where Yi' i = i, ..., s ÷ r, are the elements of _ and _ , i.e.,

I s _i , = _rYl = q0 , ..., Ys = _0, Ys+l = ' "'" Ys+r (7.2.4)

The boundary value problem is now a determined one; it consists of the
i s

2r + s equations (7.1.1), (7.2.3) in the 2r + s unknowns _ , ..., _ ,

_i, ..., _r, XI, ..., xr and the 2(r + s) boundary conditions (7.1.2).

7.3 Whensolving a specific SecondProblem, one must assign a def-

inite functional form to G in the optimality condition (7.2.1). This

assignment is at the discretion of the analyst Oncea few basic_ con-

siderations have been taken into account. Amongthese are the following:

the function must be sufficiently "smooth," and it should not yield Euler

equations (7.2.3) so degenerate that (7.1.1), (7.2.3) are underdetermined

or the boundary conditions (7.1o2) cannot be satisfied.

Since the optimality condition is introduced as an artifice to ob-

tain additional equations, G may be chosen solely for analytical con-

venienceo However, the opportunity exists to optimize the solution in

someuseful way; for example, one may choose to minimize angular dis-

placements or angular rates, work, energy, or force. (An example of a

situation in which it could be advantageous to minimize angular dis-

placements is given in Section 8.4.)
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An examplewill illustrate the possibilities as well as the problems

involved in choosing an optimality condition. Since maneuversof the

humanbody require muscular exertion, it is reasonable to seek those ma-

neuvers which minimize the effort required to perform a given reorienta-

tion. Supposing that the extent to which a maneuver is tiring depends on

the muscular forces and on the duration of their application, the follow-

ing optimality condition is proposed:

i
_,_.] = ITil _ (7.3.1)

1

th
where T. is the torque at the i joint of the body due to the musculari

forces exerted, and the summationextends to all the joints of the body.

Now, T. can be found from the inertia forces and torques which act on1

the componentbodies, and, consequently, G depends on the second deriv-

atives of _ and _ , a situation which is not provided for in (7.2.1).

However, by introducing a new Euler equation,

d2 b F d bF bF
+ - 0

dT 2 by:i. d_ yi ! by i

(7.3.2)

the method may be extended to cover the case at hand. Unfortunately,

however, because ITil does not have a continuous derivative with res-

pect to any of its arguments at T• = 0, the operations indicated in
l

(7.3.2) cannot be executed, and the optimality condition (7.3.1) must be

discarded.

8. Application to a Specific Problem

8.1 In this section the material developed in Section 7 is applied
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to the system examined in Section 4, i.e., three bodies in planar mo-

tiono _ In this context (4.2.7) assumesthe role of the constraint equa-

tion (7.1.1), and the boundary conditions (7.1.2) are

q0(0) = _00 , _0(I) = _n

4(0) = 40 , 4(1) = 4n

_(0) = _0 ' _(i) = _n (8.1.1)

The following optimality condition is chosen because its use permits a

convenient simplification of the resulting equations:

i i

J [_,4,_] = _ _0 (_,2 + 4,2 + _,2) d_ (8.1.2)

Differential equations in addition to (4.2.7) are obtained by use

of the Euler equation, (7.2.3), together with

I 2 4,2 _,2) g,
F (_,_0',4,4',_') = _ (_0' + + + _ (fl%0' + f2 _' - ) (8.1.3)

which is obtained by reference to (7°2.2).

are

These additional equations

q0" + fl' )_ + fl _'

_fl _f2
_'_--- 4'_ = 0

_fl _f2

_" + f2 _ + f2'k' - T_- q0'_ - _-T 4'_ = 0

(8.1.4)

(8.1o5)

_' - X : K (8.1.6)

the last of which is an integral of (7.2.3) due to being absent from

(8.1.3); and K is the integration constant. The aforementioned

It may be observed at this point that the system studied in Section 3

is not suitable for this application since, as may be seenby refer-

ence to (3.2.11), it is not possible to specify both the initial and

final states.
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simplification is madeby solving (8.1.6) for

expression into (8.1.4) and (8.1.5), thus eliminating k

ary value problem. After making the change of variables

and substituting this

from the bound-

= _ - Kt (8.1.7)

and introducing

_fl _f2
g (_,_) = _ _ (8.1 8)

the boundary value problem can be compiled from (8.1.4), (8.1.5),

(4.2.7), and (8.1.1), respectively: _

i

_" + fl_' + g4'X' = 0 (8.1.9)

4" + f ,_,_ v,2_- g_' _ = 0 (8.1.10)

fl_0' + f2 _' ,X' K = 0 (8.1.11)

_(0) = _0 ' _(I) = _n

4(0) : 40 , 4(1) = 4n

Y<0) = _0 ' "_i) = Xn = _n - K (8.1.12)

Observe that (8.1.9) - (8.1.11) is a fifth order system of three equa-

tions in three unknowns; the system contains a free constant and is sub-

ject to the six boundary conditions (8.1.12).

In the last of (8.1 12) X is introduced for convenience and is• , n

not a boundary value which can be specified (_n still plays this

role); this boundary condition might more properly be written

_i) + K = _n'
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8.2 A numerical solution of the boundary value problem (8.1.9) -

(8.1.12) is obtained by meansof a finite difference technique developed

from methods presented by Fox [45]. The essence of this technique is to

transform differential equations into transcendental ones by replacing

the derivatives which appear in (8.1.9) - (8.1.11) with finite difference

formulas. To this end, the unit • interval is divided into n subinter-

vals separated by n - I internal pivotal points at which _, 4, and

are unknown, these unknownsbeing denoted _i' _i' and Xi, i = i, ...,

n - i. Oneother unknown, Xn' remains after K is replaced by _n - Xn°

Using central difference formulas, (8.1.9) - (8.1.11) are written as

finite difference equations at each of the internal pivotal points, and

(8.1.11) is written at the final point by using an approximate backward

difference formula. The resulting 3n - 2 transcendental equations may

be solved for the 3n - 2 unknownpivotal values.

The central difference formulas, where Yi mayrepresent _i' _i'

or _., are given by Fox [46]:i

, n (8.2.1)Yi = _ (Yi+l - Yi-i ) ÷ nClYi

where

and

where

=_i 3 1
CI 6 _6 + _ _65 - ... (8.2.2)

,, = n 2
Yi (Yi+l 2 Yi + Yi-i ) + n2C2Yi (8.2.3)

1 64 1 66
C2 = - i-_ + _ - .o. (8.2.4)
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In these formulas, CI, C2, 6, and _ are understood to operate on

and the meaning of 6 (the central difference operator) and _ (the

averaging operator) may be obtained from examples:

Yi'

2
6 Yi = 6Yi+i/2 - 6Yi-i/2 = Yi+l Yi - Yi ÷ Yi-i (8.2.5)

_63 i 3Yi = _ (63yi+1/2 + 6 Yi_i/2) (8.2.6)

The approximate backward difference formula is an eighth-order form

given by Bickley [47]:

Yi' =---n----n40320(5040 Yi-8 - 46080 Yi-7 + 188160Yi-6 451584 Yi-5

+ 705600 Yi-4 - 752640 Yi-3 + 564480 Yi-2 - 322560Yi-i + 109584 yi)

(8.2.7)

The system of transcendental equations is

_i+l 2_0i + _0i_I + C2_0i + fl(Xi+l - 2X. + X i) + flC2 X.
l l- l

+ _4 (_i+l - _i-1 ) (Yi+l - _ i) + _2 [(_i+l - _i i) CI Ki- - i

+ (Y'i+l - Xi-i ) Cl_i] + gCl_iCiXi = 0 (8.2.8)

_i+l 2_i + _i-i + C2_i + f2 (Xi+l - 2X._ + X.I_I) + f2C2Xi

4 (_i+l - _i-_ (_Xi+l _<i-i) - _ [(_i+l _i_l ) C _°

i l

+ ($ii+I - Xi_l ) C I _°i] gCl_iC I X_ = 0 (8.2.9)

fl(_0i+ I - _0i_l) ÷ 2flCl_0 i + f2(_i+l - _i_l ) + 2f2Ci_ i

_ Xi+l + Xi_l_ 2CIX . + 2 X 2 _n = 0 (8.2.10)i n n n
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fl
20160 (5040 _n-8 - 46080 _n-7 + 188160q0n_6 - 451584 q0n_5 + 705600 q0n_4

- 752640_n-3 + 564480_n-2
f2

322560_n-i ÷ 109584_n) + 2--_(5040 _n-8

- 46080 _n-7 + 188160 _n-6 - 451584 @n-5+ 705600 _n-4 - 752640 _n-3

÷ 564480 _n-2 - 322560 _n-I ÷ 109584 _n ) 5040 46080 X
20160 Xn-8 ÷ 2016-----On-7

188160 451584 705600 752640 X 564480 X
20160 Xn-6 ÷ 20160 Xn-5 - 2'0160 Xn-4 ÷ 20160 n-3 - 20160" n-2

32256__0 )in_ 109584 X + _ X 2 _n 0 (8.2 Ii)+ 20160 i 20160 n n n - _ =

where i = i, o.., n - I, and fl' f2' and g are evaluated at the i th

th
pivotal point in (8.2.8) - (8.2.10) and at the n pivotal point in

(8o2.11).

The transcendental system (8.2.8) - (8.2.11) is solved by a method

due to Kane [48] which is well suited to use with a digital computer.

The equations are prepared for numerical solution by considering the un-

known pivotal values to be functions of a parameter z and by replacing

the right-hand sides of (8.2.8) - (8.2.11) with

k3i(l-z), and k3n_2(l-z), respectively, where

constants. For example, (8.2.10) becomes

k3i_2(l-z), k3i_l(l-z),

k3i_2, etc., are free

fl(_i+l - q0i_l)+ 2flCl_0i + f2(_i+l - _i_l ) + 2f2Ci_ i

- Xi+l + _ i 2CIk + 2 X 2 _n (i - z)- i n n - n : k3i (8.2.12)

Next, these equations are differentiated with respect to z, such differ-

entiations being denoted by asterisks; if (8o2o10) is again used as an

example, (8.2.12) becomes
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_fl _fl
--_q0(q°i+l - ¢Pi_l) _0_+_- (q0i+I - q0i_I) 4" + fl (q°i+l* _°i-*i )

_f2
_fl _fl _* + (_i+l _i-I )+ 2 _-- Clq0iq0_+ 2 _- Clq0i i _-- - q0_

_f2 "_ - 4" _f2
+_- (_i+l- _i-i ) _* + f2 (_i+l i-1 ) + 2 _--Cl_i_0*

_f2 _"_- X* + X_ + 2 X* = - k3i (8.2.13)+ 2 _- CI_i i i+l i-1 n n

This equation, together with corresponding equations obtained from

(8.2.8), (8.2.9), and (8o2.11), forms a system of first order differential

equations which, because the quantities marked with asterisks appear lin-

early, may, by inversion, be written in a form suitable for numerical in-

tegration. By integrating from z = 0 to z = i, a solution of (8.2.8)

(8o2.11) maybe obtained at z = i, since the quantities introduced on

the right-hand sides of (8_2o8) (8.2.11) vanish when z = i. The ini-

tial values required for the integration are obtained by making a guess

at the solution of the boundary value problem (8ol.9) (8.1.12), and

the values of k3i_2, etc., associated with these initial values are ob-

tained from (8o2o12) and its corresponding equations.

Solution of the transcendental equations (8.2°8) (8.2.11) is com-

plicated by the fact that the finite difference corrections Cl_0i, etCo,

are not known in advance and cannot be expressed in terms of the unknown

pivotal values° This difficulty is overcomeby an iterative procedure

in which values are assigned to the finite difference corrections, the

transcendental equations are solved for the pivotal values, and this

solution is used to redetermine the difference corrections. Since the

finite difference corrections are assumedsmall, they are initially set
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to z_ro; thereafter they are computedby extrapolating the solution of

the boundary value problem outside the unit • interval, computing higher

differences, and determining the difference corrections from (8.2.2) and

(8.2.4). The iterative solution of the transcendental equations continues

until the difference between successive solutions becomessmall. It

should be noted in passing that, on all iterations after the first, the

solution from the previous iteration provides a good set of initial

values for the numerical integration.

In the actual implementation of the finite difference technique,

several questions arise, and, consequently, the remainder of this sub-

section is devoted to a discussion of someof these questions. To begin,

a value of n must be chosen. This value must be no smaller than the

order of the approximate backward difference formula used--eight in this

case, and the author recommendsn = 5 as an absolute lower limit for

acceptable results in view of the character of the solution. Large val-
3

ues of n increase the amountof computation approximately as n due

to the numerical inversion required at each step of integration when

solving the transcendental equations.

A related question is that of the order to be used in the difference

formulas and difference corrections. It seemsadvisable to use orders as

large as practicable for three reasons: higher order formulas yield more

accurate results (an assumption); the use of a high order formula in

(8.2.11) reduces "oscillation" of the solution and improves accuracy ac-

cording to Fox [49]; although high order formulas complicate the equa-

tions considerably, they result in very little extra computation. How-

ever, the assumption noted above is not universally valid; cases have
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been found in which derivatives can be computedmore accurately by a

low order formula of the form of (8.2.7) than by a high order formula of

the same form.

Finally, a suitable method must be found for extrapolating the solu-

tion when computing difference corrections. Of several methods tried,

the one which seemsto work best involves using the pivotal values to

' , ' and X' (assuming n to be even) by meansofcompute _n/2 _n/2' n/2

approximate central difference formulas (see Bickley [47]). By using

these derivatives and the pivotal values _n/2' _n/2' and Xn/2 as

"initial" conditions, (8.1.9) - (8.1.11) may be integrated numerically,

both backward and forward from • = 1/2, to give the desired extrapola-

tion. On the unit • interval, values resulting from the numerical in-

tegration, i.e., _(i/n), etc., are used rather than pivotal values,

i.e., _i' etc., for computing the difference corrections.

8°3 The finite difference technique possesses three limitations:

it is inherently inaccurate, the accuracy of the solution cannot be deter-

mined, and the solution is given in terms of a small number of pivotal

values. These difficulties may be overcomeby switching to another

technique of solution once an approximate solution has been obtained by

the finite difference technique. In the improvement technique developed

here, the boundary value problem (8.1.9) - (8.1.12) is solved iteratively

by considering it as an initial value problem, iteration being used to

find a set of initial derivatives which, when used with the initial

values of (8.1.12), will yield the final values of (8.1.12). A set of

initial derivatives for the first iteration is obtained from the finite

difference solution by numerical differentiation [47].
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The statement of the initial value problem is similar to (8.1.9) -

(8.1.12), except that (8.1.11) must be differentiated in order to have

a system amenable to numerical integration:

qo"+ fl X" + g_'X' = 0 (8.3.1)

_" + f2X'' - g_O'X'= 0

8fl q0'2 8fl 8f2 _0' 8f2
fl_,, + f2_,, _ X,, +_ - + (_=+__) _, +__ 9,2

I

_(o) = _o ' _'(o) = %

_(o) = _o ' _'(o) = _o'

!

×(o) = _o ' ×'(o) = _0

Two matrices are introduced to facilitate the work:

(8.3°2)

=0

(8.3.3)

(8.3.4)

AJ=

"I " !

3-1_o - _Po

_ __-

xj ' - xJ -I'
0 0

(8.3.5)

where j is the iterative index, and

DJ=

+ L_,tO' a_'

(8.3.6)

, e.g., is understood to be the ratio of the change in _(i)
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to the change in _0' when the numerical integration of (8.3.1) (8.3.4)

j-l' and a slightly differing value (Reas-is performed twice, using _0

0' _'onable values for the increments in _0 ' _ , and X_' maybe found by

subtracting values computed from different order forward difference for-

mulas; for j _ 2, the elements of Aj-I provide good increments.) The

additional terms in the third row of (8.3.6), which appear because K

changes value from one iteration to the next, are evaluated using _0

and _0"

For each iteration, new initial derivatives are predicted by a

method very similar to the Newton-Raphsonmethod [50]. Specifically,

the corrections, Aj, to the initial derivatives are solutions of

Dj Aj =

_(1) - _n

)(I)
n

X(1) _n ÷ K

where, by reference to (8.1oli),

(8.3.7)

_j-l' _-i 0 _-l'K = fl(_0,_0) r0 + f2(_0,_0) _ - X (8.3.8)

and _(i), _(i), and X(1), obtained when D j is computed, correspond to

, , X To summarize the iterative process, and the

right-hand side of (8.3.7) are computed, AJ is then obtained from

(8.3.7), and the initial derivatives are corrected, i.e.,

.'I

_0

..!

_n
.s

_. |

"0

;-i'

_i,J- i '

,,j-l'

'D

+ A j (8.3.9)
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Iteration continues until the final values, _(i), 4(1), and _(i)

(= X(1) + K), becomesufficiently accurate.

8.4 The material developed in this section is applied here to the

three body humandescribed in Section 4.6. The constants used are those

for the Air Force meanmangiven in Section 4.6, but the boundary values

differ since the motion now begins and ends with the body in a "standing"

position with respect to the internal variables. Whenone seeks a re-

orientation of five degrees, the boundary values are

_0 = 180° ' _n = 180°

40 = 0 , _n = 0

_0 = 0 , _n = 50

A plot of the solution of this SecondProblem, obtained on a Burroughs

B5500computer using the program listed in Appendix 4, is shownin Fig.

8.4. Notice that _ drops almost to 60 degrees, a position that is

difficult, but not impossible (see Section 4.6), for a man to attain.

Solutions of this problem for larger reorientations, namely 15° and 30° ,

have also been obtained; the shape of the solution curves is about the

same for these cases except that the ordinates (changes in the angles)

are magnified. Even though the reorientations obtained are more impres-

sive, these solutions are not presented here because _ becomestoo

small to be physically possible for a humanbeing.

Somedetails of the solution process are given here to serve as

examples of someof the topics treated generally in Sections 8.2 and 8.3.

First, the initial guess of the pivotal values, which is necessary in

order to solve the transcendental equations, is madeso as to "suggest"
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to the computer values which are physically attainable for a man. The

guess for _ proceeds linearly from 3 (radians) at • = 0 to 1.5 at

= 1/2 and returns linearly to 3 at T = i; similarly, _ proceeds

linearly from 0 to 1.5 and returns to 0. For lack of any better informa-

tion, X is guessed to be identically zero. By reference to Fig. 8.4,

one can see that the guesses for _ and _ are quite reasonable; how-

ever, since the computer solution gives K = 114, the guess for X , in

view of (8ol.7), is very poor.

In addition to the input data already mentioned, several other quan-

tities must be specified in order to control the solution process; data

used for the problem at hand are given at the end of the program listing

in Appendix 4. Whena value of eight is used for n, the solution shown

in Fig. 8.4 is obtained in two iterations of the finite difference tech-

nique and three iterations of the improvement technique; the processor

time required on the B5500 is 1.5 minutes, about half of which is spent

on the first finite difference iteration.

9. A Variant of the Second Problem

9.1 The Second Problem is defined in Section 2.2 as one in which

it is desired to know how to prescribe the internal variables so as to

achieve a given reorientation (of the main body). Suppose, instead,

that it is desired to know how to prescribe the internal variables so as

to achieve a given motio___._nofthe main body. This problem is akin to the

Second Problem in the sense that it requires the determination of the

cause that will produce a given effect. On the other hand, it is mathe-

matically similar to the First Problem since it may be solved by specify-

ing the external variables as functions of time and integrating the
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equations of motion as an initial value problem in order to determine how

the internal variables must be prescribed.

By reference to (7.1.1), equations of motion for systems of the type

under consideration may be written

P(_$)$' + _ = 0 (9.1.I)

where g , a column matrix composedof the angular rates of the main

body multiplied by the duration of the maneuverT (see footnote, p.15),

replaces Q(i_)5', and all other terms are defined as in Section 7.1. To

solve this variant of the SecondProblem, 9 is specified as a function

of _, (9.1.1) is solved to give ¢' explicitly, and the resulting ex-

pression is integrated to give ¢(_). However, it is possible to obtain

an explicit expression for ¢' only if P is nonsingular along the

path of motion. Consequently, internal variables may be prescribed as

functions of T so as to achieve a specified motion of the main body

only if det P [_(T)] # 0, 0 _ • _ i. To illustrate this, consider a

system composedof two rectangular parallelepipeds connected at their

corners by a ball and socket joint. Using equations of motion (5.2.9) -

(5.2.11), an attempt was made to find the internal variables correspond-

ing to eight specified motions of the main body, all of them rotations

of less than 90° about an axis fixed in the main body and fixed in an

inertial reference frame. (Euler parameters, Appendix 2, were used to

specify these motions.) For the eight motions specified, a correspond-

ing ¢ existed in only one case.

9.2 The system examined in Section 3.3 provides a simple example

of the fact that it may be possible to specify the reorientation, but
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impossible to specify the motion, of the main body. Considering a system

composedof rods of length ratio 3/10, suppose that it is desired to find

_(_) such that the main body will movemonotonically from _ = 0 to

al 3
= 5° . It may be seen from the curve for -- = -- in Fig. 3.3a that

a0 i0

such a _ does not exist since _ cannot increase monotonically beyond

3.5 degrees. However, a reorientation of 5 degrees may be achieved by

changing _ from 0 to -167 degrees, as may be seen by reflecting the

al 3

curve for a_ = I-_ through the origin.

When d_ = 0, (3.2.11) gives rise to
d_ •

= 2 tan-i /__/_ a (9.2.1)
a

al
where a is defined in (3.3.1); a = -i when -- is approximately 0.65.

a0

Hence, when the length ratio is less than 0.65, the maximum monotonic

rotation of the main body is limited, and the limit may be obtained by

using (9.2.1) for _(I) in (3.2.11).

- 67 -



IV. CONCLUSIONS

Although detailed conclusions are presented in the preceding mate-

rial, it maybe helpful to summarizethese briefly.

Investigators in several fields have studied motions of the human

body in light of the principles of mechanics. But, as shownin Sec-

tion i, someof this work lacks analytical rigor and the rest tends to

be i1_completely developed; i.e., correct equations of motion may be

presented as an end in themselves, rather than as a means to a well-

defined end.

The need for a sound analytical approach to the problem of human

motion is pointed up in Sections 3 and 5, which illustrate someof the

subtleties of this problem. For example, even for the simplest case

considered, that of planar motion of two bodies, it is found that both

the governing equations and the motion itself are rather complicated,

mainly because the mass center of the system does not remain fixed in

either of the bodies. And it is surprising to find that both bodies of

this simple model can rotate in the samesense even when the angular

momentumof the system is zero, a conclusion that could scarcely be

reached by simple "action and reaction" arguments. Moving on to the

general motion of two bodies (Section 5), one finds that the equations

becomeconsiderably more complicated and that there is now no hope of a

closed form solution. In addition, it appears that very small changes

in the internal variables can produce large out-of-plane rotations of

the main body.

- 68-



Sections 4 and 6 deal with the subject of reorienting the human

body by moving the limbs. Although it may be obvious that the body can

be reoriented by meansof continuous, rotary limb motions, it is not

clear that reorientations can also be obtained by swinging the limbs

into someposition and then returning them to the original position

without performing a net rotation. Section 4 shows that this is, in-

deed, possible° Quantitative information is given in Section 6 for a

maneuverhaving potential applicability to "space walking." This maneu-

ver, in which a rotation about the spine axis is produced by swinging

one limb to the side and one limb forward, is unnatural in the sense

that one would not expect it to produce rotation about the spine axis,

and it would probably not have been discovered by experimentation or by

superficial analytical methods. Oneof these maneuvers, in which the

subject swings one leg forward and one leg to the side, yields a 20 de-

gree rotation about the spine axis; a 180 degree rotation would require

nine performances of the maneuverand would take about one minute if an

astronaut can moveat one half the speed of a manon earth who is unen-

cumberedby a space suit.

The general problem of relating reorientation of the body to rela-

tive motion of body parts maybe viewed in two ways, as described in Sec-

tion 2. The so-called First Problem deals with specified relative mo-

tions of the body parts and is easily solved as an initial value problem.

The SecondProblem, on the other hand, is mathematically complex, and

may possess either no solution or several solutions. A general method

of attack is described in Section 7, and the practical feasibility of

this method is demonstrated in Section 8 in connection with a specific

example°
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APPENDIXi

Two-Body Model of a Cat

One explanation of the righting maneuver of a freely falling cat

may be formulated in terms of a dynamical model which readily admits of

analysis. According to this explanation, the cat first bends its spine

in the middle, this bend being maintained throughout the maneuver. Next,

both the fore and hind parts of the body rotate about their respective

spine axes at the same rate relative to a reference frame in which the

spine axes are fixed; an appropriate counterrotation of this reference

frame takes place; and the combination of this rotation and those about

the spine axes leads to the turning-over of the cat. _

It is assumed that the fore and hind parts of the body may be ade-

quately represented by identical axisymmetric bodies, denoted BI and

B2, and that the masses of all other parts are negligible. Bodies BI

and B2 rotate at a rate w relative to a reference frame in which the

spine axes and the subscripted unit vectors in Fig. A-la are fixed, and

this reference frame rotates at a rate _ about an axis parallel to the

inertially fixed unit vector _. Each body has longitudinal and trans-

verse moments of inertia I and J, respectively, for its mass center,

either C I or C 2.

The angular momenta of the bodies relative to their respective mass

centers are

This explanation was advanced by Rademaker and Ter Braak [32], who

also presented an analysis essentially the same as the one given here.

This material is presented because it appears to be relatively un-

known and the reference is inaccessible to many engineering readers.
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B1/Cl
A = l(w ÷ _ cos _) i I + J f>.sin _Jl (A-I.I)

and

B21c2
A = l(w + _ cos c_) i 2 - J _sin c_J2 (A-I.2)

The sum of these is the angular momentum of the entire system rela-

tive to its mass center, C*:

As/C* = 2[I(_ + _ cos e) cos e + J _sin 2 _] i
m

(A- i. 3)

If the system starts from rest, a relationship between

be obtained by equating AS/C* to zero, which leads to

w and _ may

2

= (i - l/J) cos _ - i (A-I.4)
(l/J) cos

The ratio w/_ must satisfy a second, purely kinematic relationship

if the cat is to land on its feet after being released in an upside down

position; i.e., the angle through which each of the bodies B I and B 2

turns about its axis relative to the plane determined by these axes must

be properly related to the angle through which this plane itself turns.

Jl

cx

Fig. A-la
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If the spine is bent such that the middle of the back is the lowest point

of the cat whenreleased and the highest point when landing, then the

simplest case is that in which BI and B2 each perform one full revo-

lution while the plane determined by their axes rotates through 180 de-

grees. This occurs if w/_ = -2, and use of this value in (A-I.4) leads

to the relationship between _ and I/J displayed in Fig. A-lb.

80°

70°

60°

50_
Q,

40°

30°

20 _

i0 °

0

J

!

I I _ I I I

0 0.5 1.0 1.5

I/J

2.0

Fig. A- ib
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APPENDIX2

Kinematical Relationships

The specification of the orientation of a rigid body relative to a

reference frame may be accomplished by using one of a number of schemes,

each with its own advantages and peculiarities. This appendix presents

several of these schemes briefly.

Two-Axis Euler Angles

If R is a reference frame in which right-handed, mutually perpen-

dicular axes X_ Y, Z are fixed, any orientation of R relative to a

reference frame R0 in which right-handed, mutually perpendicular axes

XO_ Y0' Z0 are fixed may be described by specifying three angles, _i'

_2' and _3' called "two-axis" Euler angles, and defined as follows:

align X, Y, Z with X0_ Y0' Z0 and then perform successive right-

handed rotations of R of amount _i about X, _2 about Y, and _3

about X. It is the repeated use of the X-axis that suggests the name

two-axis Euler angles.

When working with vectorial quantities expressed in terms of two

sets of unit vectors, one set, _, _, _, which remain respectively paral-

lel to X, Y, Z and one set, _0' _0' _0' which remain respectively

parallel to X0_ Y0_ Z0, it is often necessary to transofrm the vec-

torial quantities from one set of unit vectors to the other. The trans-

formation formulas may be presented as follows:
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!o

c 2 s2s I -s2c I

s2s 3 c3c I - c2s3s I c3s I + c2s3c I

s2c 3 -s3c I - c2c3si -s3s I + c2c3c I

Here, as before, the subscripted letters s and c

(A-2.1)

denote trigonometric

• = cos %0i and s. = sin _0i. The transformationfunctions, i.e., c I i

table (A-2.1) may be read either across or down, e.g., i 0 = c_ + s2s _

+ s2c _ and k = SmC_0 - (SBC I + c2c3si ) J0 - (SBSl - c2c3ci) k0"

Three differential equations relate the two-axis Euler angles to

Wl, w2, w3, the

in R0:

X, Y, Z measure numbers of the angular velocity of R

74-

Note that (A-2.2) are singular when sin _2 = 0.

Two-axis Euler angles are most useful in problems where the rota-

tions _i' _2' and _3 have some physical significance; for example,

when related to a spinning top, _i is the precession angle, _2

measures the inclination of the spin axis, and _3 is the spin angle.

It should be noted that there is an ambiguity in the two-axis description

when sin _2 = 0, for then _i and _3 are indistinguishable• In ad-

dition to the singularity in (A-2.2), this implies that small values of

_i and _3 are not assured for small misalignments of X, Y, Z and

X0' Y0' Z0"

_2 = m2c3 - _3s3

_3 = ml - (_2s3 + w3c3) (c2/s2) (A-2.2)

Cpl = (_2s3 + w3c3)/s 2



Three-Axis Euler An$1es

Three-axis Euler angles el, e2, e3 are generated in the same manner

as the two-axis variety, except that the third rotation is performed about

Z rather than about X. The unit vectors _, _, _ and _0' _0' _0' de-

fined as before, are now related as follows:

where now

i0 _0

c2c 3 SlS2C 3 + ClS 3

-c2s 3 -SlS2S 3 + ClC 3

s2 -SlC 2

c. = cos e° and s. = sin e..
l l l l

_0

-CLS2C3÷ SlS 3

ClS2S 3 +SlC 3

ClC 2 (A-2.3)

And (A-2.2) are replaced with

_i = (_ic3 w2s3)/c2

_2 = _lS3 + _2c3

_3 = w3- (WlC3- w2s3) (s2/c2) (A-2.4)

Three-axis Euler angles are useful in problems where X, Y, Z and

XO' Y0' Z0 are normally closely aligned. For example, it is often desir-

able for the orientation of a spacecraft to remain essentially fixed in some

reference frame. When the misalignment of X, Y, Z and X0' Y0' Z0 is

small, el, e2, and e3 are also small, and visualization of the orienta-

tion may be facilitated by making the three rotations, in any order, about

either the X, Y, Z axes, or the X0' Y0' Z0 axes. That is, for small

el, e2, and e3, the order of the rotations and the exact direction of

the axes about which the rotations are made are relatively unimportant.

Corresponding to the ambiguity in the two-axis Euler angles, there

is an ambiguity in the three-axis Euler angle description when cos e 2 = 0,

and this is reflected in the singularity in (A-2o4) at these values of e2o
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Euler Parameters

Euler parameters stem from a theorem due to Euler which states that

any change in the orientation of a rigid body relative to a reference

frame may be obtained by performing a single rotation about an axis which

is fixed both in the body and in the reference frame. Consider two ref-

erence frames, R and R0, and let i, _, _ and !0' _0' _0 be two

right-handed sets of mutually perpendicular unit vectors, fixed in R

and in RO, respectively. If these two sets of unit vectors are initially

coincident, and if a rotation of R relative to R0 is specified in

terms of e, the angle of rotation of R relative to RO, and _, a

unit vector parallel to the axis of rotation and with sense such that in-

creasing 0 is a right-handed rotation of R about a line parallel to

_, then, by defining a vector ! as

0
= _- sin _ _ (A-2.5)

the Euler parameters ¢i' 62' ¢3 '' and _ are obtained from

=_- cos _ (A-2.6)
2

and

= el! 0 + e_0 + e_0 (A-2.7)

Since only three quantities are required to determine the orientation of

relative to R 0, a constraint equation relates el, e2, e3, and _;

i.e., it follows from (A-2.5) - (A-2.7) that

2 2 2 _2
eI + e 2 + e3 + = 2 (A-2.8)

R
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Unit vectors fixed in R and R0 are related by the transforma-

tion

i0 a0 k0

2 2

i I- 82- ¢3 ci¢2 + e3_ ¢1¢3 e2_

2 2

j ¢2¢1- ¢3 _ i- ¢3- el ¢283 + ¢I_

2 (A- 2.9)k c3¢ I + e2_ e3¢ 2 ¢i_'I i - ¢_ - ¢2

and the differential equations relating Euler parameters to angular vel-

ocity can be expressed as

Q

8
i

¢2

o

8

i
n

2

0 w 3 -w 2 w I

-w 3 0 e I w 2

_2 -el 0 w 3

-el -_2 -w3 0

¢i

¢2

¢3

(A- 2. i0)

where el, w2, w 3 are the _, _, _ measure numbers of the angular vel-

ocity of R in R 0.

On the surface, Euler parameters appear to be ideal for visualizing

changes in orientation since only a single rotation about a fixed axis

is required; but in specific instances it is not clear that Euler para-

meters are more useful for this purpose than Euler angles. As an example,

try to visualize the change in orientation of one's own body resulting

from a rotation of 120 degrees about an axis passing through the right

shoulder and the left hip. Compare this with the same change in orien-

tation given in terms of successive rotations about the spine, eye, and
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shoulder axes. Since the latter rotations are relatively easy to visual-

ize individually because of the axes involved, three of these rotations

performed successively maybe easier to visualize than a single rotation

about a skewaxis. For small changes in orientation, the first three

Euler parameters are approximately i/_- times the corresponding three-

axis Euler angles, but the Euler angles are probably easier to work with

in such situations.

Numerical integration of (A-2.9) is relatively fast because these

equations do not contain trigonometric functions; but this advantage is

of relatively little importance for the integrations done in connection

with this dissertation since the equations of motion are quite complex

in themselves.

Although there is no ambiguity in the Euler parameter description as

there is for Euler angles, there is an ambiguity in the orientation de-

scribed by the Euler parameters since they are periodic functions of e.

However, the ambiguity of orientation is of little concern in this work

since changes in orientation of less than one revolution are usually

sufficient.
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APPENDIX 3

The computer program (written in Extended Algol for the Burroughs

B5500) used with Section 6, together with the data corresponding to the

point _e = 180 ° , @_ = 30 ° in Fig. 6.3.

BEGIN COMMENT: T_REE BODIES IN GENERAL MOTION, SEE SECTION 6;

COMMENT I NEEDS KUTTAMERSON, GAUSS3, PARTOTWO, PARTOOC, DCTOTHREE,
AND PHI DECKS;

COMMENT: NOTATION CORRESPONDENCE TABLE BETWEEN SECTION 6 (LEFT) AND
PROGRAM (RIGHT): Dt=D, D2=D2, D3=D3° El=E1_,E25, E2"E1=E11, E2=E33,

E3=E21, E4=F22, ES=E23, E6=E_I, ET=E43, EB=E51, Eg=E52° E10=E53°

Ell=E62, Et2=E63, E13=E71,'E7_, E1_=E72, E15=E73, Elb=EB1, E17=E83,
E1B=E91, E19=EQ2,'E95, E20=E93, NO=NA NI=NB, K2=N3, NmP, Pt=O,
P2=R, HOI=K1, HO2=K2, HO3=K3, Hll=K4, H13=KS;

REAL HlpW2,W3,KlpK2,K3pK_pKS_PpQ,RpALPH,NBpNApN3pNBR,NAB,NABBPNBRpZlpZ2 p
Z3,Z_,CA, SA,NABC,NABS'Pll,Pt2, P21,P22,FPI,YOtY1,Y2,Y3,Y_,EPS,H,
E21,E22,E23,E31,E32,E33,RAD,T1,T2,T3pT_,TIM;

INTEGER IJ

BOOLEAN BOOL;

ARRAy Y[OZA],DCIOI3,OS3];

LABEL LOOP_EXIT,SING;

LIST SYSTEM(K1,K2,K3,K4,KS,P,Q,R,ALPH),
HISTORY(Pll,P12,P21,P22,T1,T2, T3,T_);

PROCEDURE KUTTAMERSON(N, X,HH, Y, F, EPS, AB , CUT, ERROR, STEPSIZE);

VALUE N,HH,EPS,AB,CUT,STEPSIZEI INTEGER N,CUT; REAL X,HH,EPS, AB;

REAL ARRAY Y[O]; PROCEDURE F; LABEL ERROR_ BOOLEAN STEPSIZE;

COMMENT EPs AND AB ARE THE RELATIVE AND ABSOLUTE ERROR BOUNDS RESP,

STEPSIZE TRUE TO WRITE STEPSIZE WHEN CHANGED_ FALSE FOR NO OUTPUT,
CUT IS THE MAX NO OF TIMES THE STEP SIZE MAY BE CUT IN SUCCESSION

WITHOUT RETURNING TO ERROR;
BEGIN COMMENT KUTTA MERSON INTEGRATES A SYSTEM OF N FIRST ORDER

O_DINARY DIFFERENTIAL EQUATIONS, SEE L, FOX, "NUMERICAL

SOLUTION OF ORDINARy AND PARTIAL DIFFERENTIAL

EQUATIONS", P, 2_, PERMAGON PRESS, 1962 ;

OWN REAL HC, FINAL, H2, H3, H6, HB, ERR, TEST, T, H;

OWN INTEGER I,CU; OWN BOOLEAN DBL; LABEL L,KM,RETURN;

OWN REAL ARRAY YI, Y2, FO, FI, F2[0=30];

COMMENT EXCEPT FOR HC, THE OWN VARIABLES ARE FOR SPEED ONLYJ
FORMAT MSSG("THE STEP SiZE IS NOW", R12,5," AT T=",R12,5);

DEFINE FORI = FOR 1"1 STEP I UNTIL N DO #,

CONSTANTS = H2_H/2,O; H3_H/3,0; Hb_H/6,0; HO_H/B,O #_

COMMENT CHECK FOR INITIAL ENTRY AND ADJUST H IF NECESSARY ;

H_HH;

IF N=O THEN BEGIN HC _ H; GO TO RETURN END;

IF H=O THEN GO TO RETURN; FINAL • X+H;

IF HC=O THEN HC w H;
IF EPS_O AND ABS(H)>ABS(HC) THEN

IF SIGN(H)XSIGN(HC) THEN H * HC * -HC ELSE H • HC;

CU_CUT;
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T • X+H; X • FINAL; CONSTANTS;

COMMENT MAIN KUTTA-MERSON STEP LOOP ;

LZFOR T_T STEP H UNTIL FINAL DO

BEGIN KMI F(T'HpYpFO)I

FORI YI[I] _ FO[I]xH3+YII]; FCT-2xH3, Y1, FI);

FORI YICI] e (FO[I]+FI{I])xH6+YCI]; F(T-2xH3, Y1, F1)l

FORI YI[I] _ (FI[I]X3.0÷FO[I])xHB+Y[I]; F(T-H2, YI, F2);

FORI YI[I] _ CF2[I]xA.O-FIII]x3.O÷FOII])xH2÷Y[I]; FCT, Ylp F1);

FORI Y2[I] _ (F2[I]X4.0+FI[I]+FO[I])xHb+y[I];

COMMENT DOES THE STEP SIZE H NEED TO BE CHANGED ;

IF _PSXO THEN

BEGIN DBL _ TRUE;

FORI BEGIN ERR_AB$(yIZI]-Y2EI])xO,2; TEST_ABS(YI[I])xEPS;

IF FRR>TEST AND ERR>AB THEN COMMENT HALF H;

PEGIN H _ H2; T_T-H2;

IF STEPSIZE THEN WRITE([DBL], M$SG, H,T);

IF (CU_CU'I)<O THEN BEGIN X_T; GO TO ERROR END;

IF T+H=T THEN BEGIN X_TI GO TO ERROR END;

CONSTANTS; GO TO KM;

END;

IF 6a. OxERR>TEST THEN OBL • FALSE;

END;

IF D8L THEN BEGIN H • 2XH;

IF STEPSIZE AND H_HH THEN WRITE([DBL],MSSG,H,T);

CU_CUTJ

CONSTANTS END DOUBLE H;

END;

FORI Y[I] _ Y2[I];

END KUTTA MERSON LOOP;

IF EPS=O THEN GO TO RETURN;

COMMENT NOW BE SURE TO HAVE T = FINAL ;
HC * H; H • FINAL-(T-H);

IF ABS(H)>ABS(FINAL)x1._551915228@-11 THEN

BEGIN T _ FINAL; EP5 * O; CONSTANTS; GD TO L END;
RETURN: END KUTTA MERSON;

PROCEDURE GAUSS3(A,B,X,BODL); ARRAy A[OpO],B,X[O]; BOOLEAN BDOL;

BEGIN COMMENT MORE AccURATE AND FOUR TIMES FASTER THAN GAUSS FOR 3 EQNS;

O_N REAL A11,AI2,A13,A21,A22,A23,A31,A32,A33,B1,B2,B3pC1,C2,C3,C_,CS,
C6_DEL;

A11_At1,I]; AI2_A[Ip2]; A13_A[1,3]; A21*A[2,1]; A22_A[2,2]; A23_A[2,3];

A31_AC3,13; A32_AC3,2]/ A33_A{3_33_ BI_B[I]; B2_B[2]; R3_B[3];
C1_A22xA33"A23xA32;

C2_A23xA31"A21xA33;
C3*A21xA32"A22xA31;
C_*A23xB3"A33xB2;
CS_A32xB2"A22XB3;

C6*A21xB3-A31XB_;
DEL*AIIxCI+AI2xC2+A13xC3;

BOOL_FALSE;

IF OELXO THEN BFGIN

X[1]_(B1xCI÷AI2xCa+A13xC5)/DEL;

X[23_(B1xC2"A11xCa+A13×C6)/DEL;

XZ3]_(B1xC3-A11xC5-A12xc6)/DEL END

ELSE IF BI=O AND B2=O AND B3=O THEN XII]_X[2]_X[3]_O
ELSE BOOL_TRUE;

END GAUSS3;

PROCEDURE PARTOTWO(E1,E2,E3_ETA,TI,T2,T3,PRINT);
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VALUEEIp E2_ E3, ETApPRINT;

REAL Zip E2p E3, ETAp TI_T2pT3; BOOLEAN PRINT;

BEGIN COMMENT:

INPUT: EULER PARAMETERS EIp E2p E3 AND ETA

OUTPUT: TWO AXIS EULER ANGLES Tt, T2, T3 ;
REAL PROCEDURE ASIN(X); VALUE X; REAL X;

ASINwIF ABS(X)>I,O THEN g99 ELSE IF ABS(X)=I,0 THEN Xxl,570796327 ELSE
ARCTAN(X/SQRT(1,O-XxX));
FORMAT FI(//"PROCEDURE pARTOTWO"//XIO,"INPUTt EULER PARAMETERS"/

X20,"FI ="_R16,9/

X20_"E2 ="pR16,Q/X2O,"E3 =",R16,O/X20p"ETA ="_R16,9//
X20,"EULER PARAMETER TEST: E1"2 + E2"2 + E3"2 + ETA*2 =",

R16,9 //

XIO,"OUTPUT: TWO AXIS EULER ANGLES"/ X2O,

"THETA I =" , R16.9," RADIANS",R16.9, " DEGREES"/X2O,

"THETA 2 =" , R16.Qp" RADIANS",R16.9p " DEGREES"/X20,

"THETA 3 =" , R16,9," RADIANS"'R16,9, " DEGREES"//);
REAL PNP,PPP,RAD;

RAD _ 180,0/3,1_15926536 ;
PMP • ARCTAN(E3/E2);

PPP _ ARCTAN(E1/ETA);

TI • PMP + PPp J

T3 • PPP - PMP
T2 • 2,OwASIN(E2/(SQRT(2.0) x COS(PMP)));

IF PRINT THEN

WRITE(FI,EIpE2pE3,ETA,EI*2+E2*2+E3*2+ETA*2_T1,TIXRAD, T2,T2XRAD, T3_

T3xRAD);

END PARTOTWO;

PROCEDURE PARTODC(E1,E2_E3_ETA,A_PRINT);

VALUE EI,E2,F3,ETA,PRINT;

REAL EIpE2,E3,ETA

BOOLEAN PRINT

REAL ARRAY AiD,O] ;

BEGIN COMMENT:

INPUTI EULER PARAMETERS EIpE2,E3 AND ETA

_HICH DESCRIBE A ROTATION FROM X TO Y

OUTPUT: ARRAY OF DIRECTION COSINES A[0:3,0:3]

WHERE Y = AX AND AtI,J] = Ytl],X[J] ;

FORMAT FI(//"PROCEDURE PARTODC"//XIOp"INPUT: EULER PARAMETERS"/

X20,"E1 =",R16,9/
X20,"E2 =",R16,9/X20,"E3 =",R16,g/X20,"ETA =",R16,9//

X20,"FULER PARAMETER TEST: E1"2 ÷ E2"2 + E3"2 ÷ ETA*2 =",

R16.9 //
"OUTPUT: DIRECTION COSINES"/ 3(XI_,3R18.9/)/);

INTEGER IpJ;

A[1,1] *1,0-F2*2"E3*2; A[1J2]_ ElxE2+E3xETA; Atl,3]_EIxE3"E2xETA ;
A[2,1] * E2xEI'E3xETA; A[2,2]*1.O'E3*2"EI*2; A[2,3]*E2XE3+EIxETA ;

A[3,1] • E3xEI+E2xETA; A[3,2]_ E3xE2"EIxETA; A[3,3]_1,0"El*2-E2*2;
IF PRINT THEN

WRITE(FI_ElpE2,E3pETA, EI*2+E2*2÷E3*2÷ETA*2_
FOR I_I,2_3 DO FOR J_I_2,3 DC All,J] ) ;

END PARTODC ;

PROCEDURE DCTOTHREE(A,TI,T2,T3PPRINT);REAL ARRAY AtOpO]; REAL T1,T2_T3;

BOOLEAN PRINT; BEGIN COMMENT:

INPUT: ARRAY OF DIRECTION COSINES A[0:3,0:3]

WHERE Y = AX AND A{I,J] = Y[I],X[J]

OUTPUT: THREE AXIS EULER ANGLES TI,T2_ AND T3
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_HICHDESCRIBEA ROTATION FROM X TO Y ;

REAL PROCEDURE ASIN(X); VALUE X; REAL X;

ASI_IF ABS(X)>t,O THEN 999 ELSE IF ABS(X)=%,O THEk Xx1,570796327 ELSE

ARCTAN(X/SQRT(I,0-XxX));

FORMAT Ft(//"PROCEDURE DCTOTHREE"//X%Op"INPUT; DIRECTION COSINES"/

3(XI4,3RI6,Q/)//X%B,"DIRECTION COSINE TESTS ="p_R16,9//),

F2(XtOpNOUTPUT= THREE AXIS EULER ANGLES"/ X20_

"THETA I =" _ Rtb,9_" RADIANS",R%6,9_ " DEGREES"IX20_

"THETA 2 =" , R16,9," RADIANS",RIb,9_ " DEGREES"/X2O_

"THETA 3 =" _ RI_,9," RADIANS",RI6,Q, " DEGREES"//);

INTEGER IpJ;

REAL ERR,S1,S_,S3pC%pC2,C3pPI,TESTI*TEST2pTEST3,TESTq;

LABEL CHECK_RFTURN,CANT;

P% _ 3,1415926536_

ERR • 0,001 ;

52 • AI3,1] ;
T2 * ASIN(S2);

C2 • COS(T2);

$1 • "A[3,2]/C2;

It * ASIN(SI);

CI * COS(T1)_
IF C2 x CI x A{3,3] < 0 THEN BEGIN T2 • PI " T2; C2 • -C2;

Tt • -TI ; 51 • -$I ; END;

S3 _ "A[2pl]/C2;
T3 • ASIN(S3);
C3 • COS(T3);

IF C2 x C3 x A[I,1] < 0 THEN BEGIN T3 * P% " T3 ; C3 * "C3; END;

CHECK:

IF ABS(CI x 53 + 51 x $2 x C3 - A[1,2] ) < ERR AND

ABS(C% x C3 " St x $2 x S3 - A[2_2] ) < ERR AND

ABS(S1 x S3 " Cl x S2 x C3 - A[%p3] ) < ERR AND
ABS(S% x C3 + C1 x $2 x 53 - A[2,3] ) < ERR THEN

BEGIN
T2 _ (T2 + Pl) MOO (2 x PI) - PI;

T3 • (T3 + PI) MOD (2 x PI) - PI;

IF PRINT THEN BEGIN

TESTI*TEST2*TEST3.TESTa*O,O;

FOR I _ 1p2,3 DO BEGIN

TEST% * TEST% + A[Ipl]XAZI_2];

TEST2 • TEST2 + A[I,I]XA[Ip3];

TEST3 • TEST3 + AEI_I]WA[2pl];

TESTa • TESTa + AEIpl]XA[3,1]; END;
_RITE(FI,FOR I*ip2p3 DO FOR J-1,2,3 DO A[I_J]_TEST%_TEST2_TEST3_TESTA);

_RITE(F2_Tt_TIxIFo,O/PI_T2,T2xtBO,O/PI_T3_T3x%BO,O/PI); END PRINT;

GO TO RETURN END ELSE
CANT: WRITE(<-THREE-AXIS EULER ANGLES CANNOT BE FOUND">);

RETURNI END DCTOTHREE;

PROCEDURE PHI(T,T1,T2,P1,P2,PERI_PER2_P*PD);
COMMENT: GENERATES INTERNAL VARIABLES ACCORDING TO THE STANDARD TIME

HISTORY, SFE SECTION A,A;
COMMENT| Tt*PERt/2_T2_PER2/2 ARE_ RESP,_ THE DURATIONS OF THE A PORTIONS

OF THE HIST_'RY, PD I5 THE DERIVATIVE OF PI
VALUE T_TI_T2_PI_P2_PERt_PER2;
REAL T_Tt_T2_P_R2_PERt_PER2_P_PD;

BEGIN OWN REAL X,S;
PERI*PER1/2;
IF TST1 OR T2TI+T2+PERI+PER2/2 THEN BEGIN

P_P1; PD*O END ELSE
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IF T<TI+PER1 THEN BEGIN

PERI_PERI÷PER1;
T_(T-T1)/PER1;

X_FPIxT;

S'SIN(X);
PD_2w(P2"P1);
P*PDxCT'S/FPI)+Pt;

PD_PDx(I"COS(X))/PER1 END ELSE
IF TITI+T2+PER1 THEN BEGIN
P_P2; PD*O END ELSE BEGIN

T_¢T-T1-T2-PERI)/PER2;

X_FPIxT;
S_SIN(X);

PD_2w(PI"P2);

P*PDx(T'S/FPI)+P2;
PD_PDx(I"COS(X))/PER2 END

END PHI;

PROCEDURE DERIV¢XJY,DY);

COMMENT: EQUATIONS OF MOTION. EQUIVALENT TO EQNS (6.2.10}-(8.2.15);
VALUE X;

REAL X;

ARRAY Y,DY[O];

BEGIN OWN REAL PI,PID,P2,P2D,SI,CI,S2,C2,D2,D3,D_E11,E1_E21_E22_E23p

E25'E33'E_l,E_3"E51"E52'E53,E62,E63,E71_E72,E?3,ET_,EB1,EB3,E91,
E92, E93, E95,Y1,Y2,Y3jY_

OWN ARRAY G[O:3_O:3],Hp_[O:3];
PHI(X,T1,T3,PI1_P12,1,1,PI,PID);

SI_SIN(P1); CI_COS(P1);

ZI_NBBxQxCIxC2;

D2_'ZI+Z2+Z3-NABCxC1;
D_2x(D3+Z3-NABCxC1);
E33_2XNBxR,2/Q;

E25_E14_-K4-NBxN3xQ;

E_I_2xNAB/Q;
E41_E41+K1;

E_I_E_lxCA;

E63_E1_xS1;

E73÷NBBxQxC2+NABC+Z4;
E71_-ET_;

E83_'E14xS2;
E92_NBBxQ;

E95_-(EQ2_E92xSi+NBR);

E51*-NABxS2+K3XSA;
H[1]*(D2-E14)xPID+E95xS2XP2D;

H[3]_'E7_xC1xPtD-EQSxc2xP2D;

PHI(X,T2,T_,P21,P22,1,1,P2,P2D);
S2*SIN(P2); C2_COS(P2);
Z3_NBRxS1;
D3_'Zl÷Z2"NABCxC2+NABSx52;
E21*'NBRxS2;
E52_NABxS1;

Ell*E33"EI_;

E22*K2+E_l-Z3-E14;
E43*'E_1xSA;
E62*'El_xC1;
E72_'NBR+Z_xS1;

ETa_NBBxQxS2"NABS;
E81*'El_xC2;
EQl*NABS'Z_xS2;

E93*NABC+E92xCl+Z_xC2;
E23_NBRx(C2-C1);

E53*NABx(CI+C2)+K3xCA;

H[2]_'E7_XSIXPID-(E25"D3)XP2D;

G[1,1]_D+EII+E_IxCA+ESIxSA+EBIXC2-E91xS2;

G[1,2]_E52wSA'E92x52;

G[l_3]*E_3xCA+E53xSA+EB3xC2-E93xS2;
G[2,1]*E21+E71xS1;
G[2,2]_D+E22+E62xC1+E72xS1;
G[2,3]_E23÷E63XCl+E73xS1;

G[3,1]_-E_IxSA+E51XCA+E71xC1+E81xS2+E91xC2;
G[3,2]_E52xCA-E62xS1+E72xC1+E92xC2J

G[3"3]_D+E33"E_3xSA+E53xCA'E63xS1+E73xCl+E83xS2+E93xC2;
GAUSS3(G,H_W,BODL); IF BOOL THEN GO TO SING;

COMMENT: W=ANGULAR RATES, Y=EULER PARAMETERS;

WI_[1]; _2_W[2]; W3*X[3];

YI_Y[I]; Y2_Y[2]; Y3_Y[3]; YA_Y[_];
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OYE1].(H3xY2-H2xY3+_txY4]/2;
DYE2]*(-H3xYI÷HlxY3÷W2xYa)/2;
DY[3]*CW2xYt-WtxY2÷W3xY_)/2;

DYE_].-(WlxYI÷W2xY2÷W3xY3)/2
END PROCEDURE OERIV;

NB*II(P÷2);
N3*(NA÷NB)*2÷NB*2;
NAB*NAxNB;

NBB*NB*2;
Z4_KS-Z2;
SA_SIN(ALPH);

NABS_NABxSA;

WRITE(IDBL]p<///

"ETA"_XI_,"XI

COMMENT= FIRST EXECUTABLE STATEMENT;

FPI*lbxARCTAN(t);
RAD÷?20/FPI; COMMENT: FPI=_ TIMES pl, RAD CONVERTS RADIANS'DEGREES;

LOOP= READ(SYSTE_)[EXIT];

READ(HISTORY)tEXIT];

READ(EPS,H}tEXIT]; COMMENT EPS=INTEGRATION ERROR PARAMETER, H-STEP SIZE;

WRITE(<"INTEGRATION OF THE EQUATIONS OF MOTION FOR THE THREE BODY MODEL"

p". SEE SECTION 6",///,"INPUT DATA",//," INERTIA PARAMETERSI "

p"KI_...,K5 ",SRI7,Sp//_" P=MAIMBp Q=CIBp R=AIBp ALPHA "p

_R17.5,/>pSYSTEM);
WRITE(<" HISTORY= P11, P12, P21, P22 ",_R17,5,//_

Xl_,"T1, T2, T3, T_",X7 ,_R17.5>,HISTORY);
WRITE(<///,"INTEGRATION ERROR PARAMETER"*RIb._>_EPS);

PII_PII/RAD; P12_Pt2/RAD; P21_P21/RADl P22_P22/RADJ

NA_PxNB;

NBR_NBXR;

NABB_NABxNB;

Z2_NABBxQ;

CA_COS(ALPH)J

NABC_NABxCA;

,XIO,"TIME"pXI3p"EPS I"mXI2p"EPS 2",XI2,"EPS 3",X12,

(DEG)">);

YI*YEt]; Y2*Y[2]; Y3_Y[3]; Y_Y[_];
WRITE([DBL]p<6R17.5>_YO_Yl_Y2_Y3,Y_,2xARCTAN(SQRT(Yl*2÷Y2*2÷Y3*2)/Y4)

xRAD);

TIM*TIME(2);

WHILE YO<2-fl-6 DO BEGIN COMMENT INTEGRATES EQNS. FROM YO=O TO YO=2;
KUTTAMERSON(a,YO,H,Y,DERIV,EPS,.OIxEPS,IO,SING,FALSE)_

YI_Ytl]; Y2_y{2]; y3_Y[3]; Y_YtA];

IF YAXO THEN WRITE(EDBL],<6RIT.5>,YO_YI,Y2_Y3, YA,2xARCTAN(SQRT(YI*2

÷Y2*2÷Y3,2)/Y_)xRAD) END;

WRITE(<//"INTEGRATION TIME ="pR%O.3,//>,(TIME(2)'TIM)/6O);

YO_SQRT(YI*2+Y2*2÷Y3*2);

PARTOTHO(Y3_Y1_Y2,Y_,E21pE22,E23*FALSE);

PARTDDC(YI_Y2_Y3,YA_DC,FALSE);

DCTCTHREE(DC_E31,E32,E_3,FALSE);

WRITE(_DBL],</,"OTHER DESCRIPTIONS OF THE REORIENTATION"_I,

"DIRECTION COSINES OF THE EULER THEOREM AXIS",XB,3R17.5,1,

"TWO-AXIS EULER ANGLES (3-1-3, DEGREES)",X1_,3Rt7,5,/,
"THREE-AXIS EULER ANGLES (I"2-3, DEGREES}",X11,3RI7,Sp/>,

Y1/YO,Y2/YO,y3/YO,E21XRAD,E22xRAD,E23xRAD,E31xRAD,E32xRAD,E33 XRAD);

WRITE([PAGE]);

GO TO LOOP;
SING= WRITE(<"ERRDR IN GAUSS3">);

WRITE(_PAGE]);

GO TO LOOP;
EXIT= END.

1,287 1.256 .06_I .0188 .000_7 15.6 .58_ ._46 0 SYSTEM

0 tBO 0 30 0 .5 ,5 .5 HISTORY

.01 ,5 CONTROL
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APPENDIX 4

The computer program (written in Extended Algol for the Burroughs

B5500) used with Section 8, together with the data used to obtain

Fig. 8.4.

BEGIN COMMENT PROGRAM USED WITH SECTION 8;

COMMENT NEEDS KUTTAMERSON, GAUSS3, DYDT, GAUSS, PLOT PACKAGE (123);
COMMENT FOR ANGL_Ss INPUT AND PRINTED OUTPUT IN DEGREESm PUNCHED OUTPUT

IN RADIANS3

REAL A3pB3,C3,ApB,C,AA_MA,MB,MCpKlpK2,K3,L1,L2pL3,M1pM2_M,NlpN2,N3pN_,
NS,N6pRAD,PHOpPHlpPSO,PSlpXIOpXII_EPSpNORM, TpTIMpSUM,CONST,TEMP_

FACTORjDEL%pDEL2pDEL3, Y_pYS,Y6pFIO,F2OsSAVEEPS,CHANGE,SlpS2, ClpC2_
PHD,PSD,XID,HI*H2,D,DH1DPH,DH1DPS,DH1DPHDPH,DH1DPSDPS,DH1DPHDPS,
DH2DPHjDH2DPS,DH2DPHDPH_DHZDPSDPS,DH2DPHDPS,DDCPH,DDDPS,DDDPHDPH,

DDDPSDPS'DDDPHDPS,FI"F2pDF1DPH,DFIDPS,DF1DPSDPS,DF1DPMDPS,DF2DPHDPHp
DF2DPHDPSp_,DGDPM,DGDPS,DF2DPH,DF2DPS;

INTEGER I,JpK,NSTEP,COUNT,MSTEPJ

BOOLEAN PRINT_PLOT,PUNCH_MSSGPBOOL,FIRST_
LABEL LOOP,EXIT,SING,SINGlpSING2_
LIST SYSTEM(K1,K2,K3,MlpM2pL1,L2,L3),

BOUNDARY(PHOpPHt,PSO'PStpXIO,XIt);

Insert Gauss3 and Kuttamerson Procedures here. See Appendix 3.

PHOCEDURE GAUSS (M, A, B, X, SING);

COMMENT SOLVES LINEAR SYSTEMS OF EQUATIONS;
VALUE M;
INTEGER MI

REAL ARRAY A [0, 0], B, X [O]J

LABEL SING;

BEGIN INTEGER I, J, IMAX, K, L;

REAL MX, T, OUOT;

PROCEDURE ELIM (KPI, N, QUOT, A, B);
VALUE KP1, N, QUOT;

INTEGER N, KP1;
REAL QUOT;

REAL ARRAY A, B [0];

BEGIN OWN INTEGER I;
FOR I + KP1 STEP ! UNTIL N DO A [I] _ A [I] " QUOT x B [I];

END ELIM_
FOR K • 1 STEP I UNTIL M DO
BEGIN MX + OJ

FOR I * K STEP I UNTIL M DO IF MX < (T_ABS(A[I,K])) THEN
BEGIN MX • T; IMAX_I END;

IF MX = 0 THEN GO TD SING;
IF K _ IMAX THEN
BEGIN

B [K] * B [IMAX]_
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B [IMAX]_T;

FOR L *M STEP -I UNTIL K DO

BEGIN T * A [IMAX,L];

A [IMAX,L]*A[K,L];
A [K, L] • T;

END;

END ELSE T.A[K,K];

FOR J • K + % STEP % UNTIL M DO

BEGIN QUOT * A [J, K] / T_
B tJ] • B [J] - B [K] x QUOT;

ELIM (K + I, M, @UOT, A [J, *], A [K, *])3

END;

END;

FOR I • M %TFP - 1 UNTIL 1 DO

BEGIN T * O;

FOR L * I + 1 STEP 1 UNTIL M DO T • T + A IT, L] x X [L];

X El] • (B [I] " T) / A [I, I];

END;

END OF GAUSS;

PRUCEDuRE GRAPHPLOTTER(X,YpM,N,G,L,S,EM,CO,CI,C2,C3,CA);VALUE M,N,G,L,S;

INIEGER MpN,G,LpS;ALPHA EM,CO,Ct,C2pCS_C_;REAL ARRAY X[O]pY[O,O];BEGIN M

*M-t;N*N-IJG*G-t;L*L-t;BEGIN REAL P,OpXMAX,XMIN, YMAX,YMIN;INTEGER IpJ;AL

pHA ARRAY PLDT[OSL,O:S+G],C[O:3];C[O]*Ct;C[t]*C2;C[2]*C3;C[3]*Ca;XMAX_X_

IN*X[O];FOR I*tSTEP IUNTIL M DU BEGIN IF XLI]>XMAX THEN XMAX*X[I];IF X[I

]<XMIN THEN XMIN*X[I]END MAXMIN HUNT FOR X;YMAX*YMIN*Y[OpO];FOR I*OSTEP

%UNTIL M DO FOR J*OSTEP %UNTIL N DO BEGIN IF Y[I,J]>YMAX THEN YMAX*Y[I,J

];IF Y[I,J]<YMIN THEN YMIN*Y[IpJ]END MAXMIN HUNT FCR yJP*L/(XMAX-XMIN);Q

*(5"%)/(YMAX-YMIN);FOR I*OSTEP %UNTIL L DO FOR J*OSTEP tUNTIL G DO PLOT[

I,J]*" ";S.S+G;G.G+t;FOR I*OSTEP tUNTIL L DO FOR J*G STEP 1UNTIL 5

DO PLOT[I,J]*CO;FOR I*O_L DO FOR J*G STEP IUNTIL S DO PLOT[I,J]*EM;FOR I

*1STEP IUNTIL L-IDO FOR J_G,S 00 PLOT[I,J]*EM;FOR I*OSTEP IUNTIL M DO FO

R J_N STEP-1UNTIL ODD PLOT[ENTIER(O.5+px[x[I]-XMIN)),G+ENTIER(O.5+Qx[y[I

,J]'YMIN))]_C[J];FOR I*OSTEP IUNTIL L DO WRITE(<12CAI>,FOR J*OSTEP IUNTI

L 5 DO PLOT[I,J]);END END OF GRAPHPLOTTER WITH NO XMAX ETC;

PROCEDURE CORRECTION(M,N,Y,PRO,CI,C2);

VALUE M,N; INTEGER M,N; ARRAY Y,Cl,C2[O]; PROCEDURE PRO;

COMMENT M+I = NUMBER OF POINTS IN Y: Y[O:M],
N= MIGHEST DIFFERENCES TO BE USED: N= 3,...,10,

Y= ARRAY FOR wHICH DIFFERENCE CORRECTIONS WILL BE COMPUTED,

PRO(YY,M,K)= PROCEDURE WHICH WILL EXTRAPOLATE YY BY COMPUTING YY[-K]

& YY[M+K] GIVEN YY['K+I],..._YY[M+K'I],
CI,C2= THE DIFFERENCE CORRECTIONS FOR THE FIRST AND SECOND

DERIVATIV{S OF Y. _EE REF.[_6];

BEGIN INTEGER I,N2,J;
ARRAY EVEN,ODD[-ENTIER((N'I)/2):M+ENTIER((N'I)/2)], A£0:I0];

N2_ ENTIER((N'I)/2);

FUR I_O STEP 1 UNTIL M DO EVEN[I]*Y[I];

FOR I_I STEP 1 UNTIL NE DO PRO(EVEN,M,%);
FUR I_I STEP I UNTIL M'I DO CI[I]_C2[I]_O;

A[3]_-1/6; A[_]_-I/12; A[b]el/30; A[6]_I/90; A[7]_-I/I_0; A[8]_-1/5601

A[9]_1/630; A[10]_1/31bO;

FOR J_1 STEP 1 UNTIL N DO IF J MOO _X 0 THEN

FOR I_'N2+ENTIER(J/2) STEP I UNTIL M+N2"ENTIER((J+I)/2) DO BEGIN

ODDEI]_EVEN[I+I]'EVEN[I];

IF J>2 AND I>O AND I<M THEN Cl[I]_Cl[I]+A[J]/2x(ODD[I'I]+ODD[I])

END ELSE

FOR I_-N2+ENTIER(J/2) STEP i UNTIL M+N2-ENTIER((J+I)/2) O0 BEGIN
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END

EVEN[I]eODD[I]-ODDII-1];

IF J>2 AND I>O AND I<M THEN

CORRECTION;
C2[I]eC2[I]+A[J]xEVEN[I] END;

REAL PROCEDURE DYDT(Y_KpNSTEP);

VALUE K_NSTEP3 INTEGER K_NSTEP3 ARRAY Y[O]3
COMMENT THE FIRST DERIVATIVE OF Y AT Y[K], SEE REFe[A?];
COMMENT NSTEP IS THE NUMBER OF INTERVALS IN A UNIT DISTANCE! NSTEP=I/HJ

DYDTe IF K_A AND KSNSTEP-_ THEN NSTEP/40320,Ox(144,0x(Y[K-_]-y[K+4])

"1536,OxCY[K'3]'Y[K+3])+8064,OxCY[K'2]'Y[K+2])-32256,0x(y[K-1]
-Y[K÷I]))

ELSE IF K_3 AND KSNSTEP-3 THEN NSTEP/720.Ox(-12,Ox(Y[K-3]-Y[K+3])

÷IO8,Ox(Y[K=2]=Y[K+2])=5_O,Ox(yEK-1]-Y[K÷I]))

ELSE IF K=O THEN NSTEP/4032O,Ox(-109584,0xY[O]÷32256O,OxY[1]

-56_480,Oxy[2]+TS26aO,Oxy[3]-7056oO,Oxy[a]+a51584,Oxy[5]
-188160,OxY[6]+460BO,OxY[7]-SOAO,OxY[8])

ELSE IF K=NSTEP THEN NSTEP/aO320,Ox(50_O,OxY[K-B]-a6080.OxY[K-7]

+IB816O,OxY[K-6]-A5158=,OxY[K-5]÷7056OO,OxY[K-a]-7526_O,OxY[K-3]
+56aA8O,OwY[K-E]-322560,OxY[K-1]+10958_,OxYIK])

ELSE IF K<3 THEN NSTEP/720,Ox(-176_,OxY[K]+A320,OxY[K+t]-SAOO,O
xY[K+2]+ABOO,DFY[K+3]'27OO,Dxy[K+4]+BbA,OxyIK+S]-t20,OXY[K+6] )

ELSE NSTEP/720,Ox(120,OxY[K-6]-B6A,OxY[K-S]+270O,OxY[K-A]
-4BOO,OxY[K-3]+S_OO,OxY[K-2]-_320,OxY[K-t]+176_,OxY[K]);

PROCEDURE FIANDF2;

BEGIN COMMENT COMPUTES FI AND F2,

DHIDPSe Ntx(SlxC2÷CIxS2);

DH2DPHe -DHIDPS;

DHIDPSDPSe NlX(ClXC2-SlxS2);
DH1DPHDPSe DH1DPSDPS_
DH2DPHDPHe DH2DPHDPSe-DHtDPSDPSj

DH1DPHe DH1DPS-N2xS1;
DH1DPHDPHe DHIDPSDPS-N2xCI_
Hle -DH1DPHDPH÷NA;
DH2DPS_ -DH1DPS÷N3XS23
OH2DPSDPS • -DH1DPSDPS+N3xC2;

HE_ -DH2DPSDPS+NS_

DDDPHe -2,OxDH1DpH_
DDDPSe 2,0XDH2DPS;

DDDPHDPHe "2,0xDHIDPHDPH;
DDDPSDPSe 2,0XDH2DPSDPS;

DDDPHDPS_ "2,0xDH1DPSDPS;

De "DDDPHDPH-DDDpSDPS÷DDDPHDpS+N61
Fle H1/D;
FEe H2/O

END F1ANDF2;

SEE EQN (_,2,8};

PROCEDURE DERIVATIVES_

BEGIN COMMENT COMPUTES PARTIAL DERIVATIVES OF FIp F2* AND G,
C4,2o8)p(8,I,8)_

DFIDPHe (DHIDPH'FZXDDDPH)IDJ
DF1DPSe (DHtDPS-FZXDDDPS)/D;

DF2DPHe (DH2DPH-F2xDDDPH)/D;

DF2DPSe (DH2DPS-F2xDDDPS)/D;
DF1DPSDPS_ (DH1DPSDPS-2,0xDF1DPSxDDDpS-FlxDDDPSDPS)/D_

DF1DPHDPSe (DH1DpHDPS-DF1DpSxDDDPH-DF1DPHXDDDPS-FlxDDDPHDPS)/D _
DF2DPHDPHe (DH2DpHDpH'2,0xDF2DPHxDDDPH'F2xDDDPHDPF)/D_

DF2DPHDPS • (DH2DpHDPS-DF2DPSxDDDPH-DF2DPHxDDDPS-F2xDDDPHDPS)/D_
G_ DF1DPSwDF2DPH_

SEE EQNS
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DGDPH_ DFtDPHDPS-DF2DPHDPH;

DGDPS_ DFtDPSDPS-DF2DPHDP5
END DERIVATIVES;

COMMENT FIRST EXECUTABLE STATEMENT;

RAD* _5/ARCTAN(1);
LOOP: READ(SYSTEm)[EXIT);

READ(BOUNDARY)[EXIT);

READ(EPS,CHANGE,NORM,COUNTpNSTEP,MSSG,PRiNT,PLOT,PUNCH)[EXIT];

_RITE(<"THREE BOD Y MODEL TREATED AS A SECOND PROBLEM. SEE SECTION 8.",
///,"INPUT DATA",//," INERTIA PARAMETERS: KI, K2, K3",3RI?.S,

//," MI=_B/M, M2=MC/M, L1, L2, L3 ",SR17,Sp/>,SySTEM);

_RITE(<" INITIAL VALUES pHI, PSI, Xl ",3R17.5,//," FINAL VAL"

"UES PHI, PSI, Xl ",3RI/,5>,PH0,PS0,XIO,PH1,PSI,XI1);
_RI E(<///,"EPSILON, CHANGE, NORM ERROR, NSTEP ",

ARI?.5.///>,EPS,CHANGE,NORM,NSTEP);

EPS*EPSxIO ; COMMENT EPS 15 RESTORED TO ITS INITIAL VALUE AFTER THE

FINITE DIFFERENCE SOLN;

MSTEP_8; COMMENT MSTEP=N IN SECTION B;

COMMENT CONVERT BOUNDARY VALUES TO RADIANS;

PHO_ PHO/RAD; PHI • PH1/RAD;
PSO_ PSO/RAD; PS1 • PS1/RAO;
XIO_ XIO/RAD; XI1 • XI1/RAD;

COMMENT CORRESPONDENCE OF SECTION B (LEFT) TO PROGRAM (RIGHT): IO=A3.

It=B3. 12=C3. MO=MA. MI=MB. M2=MC. AO=A. At=B. A2=C. BO=AA;
A3_ K1; B3_ K2; C3_ K3;
MA* I"Ml"M2; MB_ M1; MC_ M2;

Ae L1; B_ L2; C_ L3; AA_ 1;
M_ MA+MB+MC;

COMMENT NI,...,N6 ARE USED IN FIANDF2;

NI_ MBxMCxMxBxC;
N2* MBxMxBx(MAxA+MCxAA);

N3* MCxMxCx((MA+MB)xAA-MAWA);

NA* -M*2xB3-MBxMx(MA+MC)xB*2;

N5* M,2xC3+MCxMx(MA+MB)xC*2;

N6_ M*2x(A3+B3+C3)+2.0xMBXMCxMxBxC+MAx(MBXB+MCxC)*2+MAX((MB+MC)xA-MCxAA

)*2+MBx((MA+MC)xB-MCxC)*2+MBX(MAXA+MCxAA)*2+MCx((MA+MB)xC-MBXB)*2

+MCx((MA+MB)xAA-MAXA)*2;

COMMENT NEW BLOCK HERE TO REDUCE STORAGE REQUIRED;

BEGIN ARRAY PH,PS,XI{OINSTEP], CEI,CE2[OI3X(MSTEP-%))_

KK,KKK,X[OI3xMSTEP-2],F[O:3xMSTEP-2,013xMSTEP-2];

LABEL APPROX;

PROCEDURE DERIV(T,Y,OY); VALUE T; REAL T; ARRAY Y,CY[O];

COMMENT EQNS FOR THE INITIAL VALUE PROBLEM. SEE ECNS (8.3°1)-{8.3.A);

BEGIN OWN REAL YI,Y2,Y3;

O_k REAL ARRAY P[O:3,0;3],Q[O;3];

DY[_], YI_ Y[I]; DYES)* Y2* Y[2]; DY[6]* Y3_ Y[3];
51- SIN(Y{_]); CI * COS(Y[_]);

52, SIN(Y[5)); C2 _ COS(Y[5));

FIANDF2;
DERIVATIVES;

P[1,2]_ Pt2,1]_ O;

P[1,1]_ P[2,2]_ 1,0;

P[1,3]* P[3,1] _ F1;

P[2,3]_ P[3,2]_ F2;
P[3,3]* "I.0;

Q[I]* "GxY2xY3;
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Q[2]_ GxyIxY33
Q[3]* -DFIDPHXy1.2-(DFtDPS+DF2DPH)xYlxY2-DF2DPSXy2,2 ;
GAUSS3(P,geOYeBOOL); IF BOOL THEN GO TO SING

END DERIV3

PROCEDURE DIFFEQ(T,X,DX); VALUE T; REAL T; ARRAY X,DX[O];
COMMENT EQNS FOR SOLVING THE NONLINEAR FINITE DIFF EQNS, SEEp E,G,p

EQN (8,2,13)I

BEGIN OWN REAL UOpUI,U2, VOpVI,V2pWO,NI,W2,DUpDV,DW,W_CEIOpCEII,CEI2 ,
CE20pCE21,CE22,A,BpC;

OWN INTEGER IO,II_12;

FOR I* 0 STEP I UNTIL 3XMSTEP-2 DO FOR J* I STEP I UNTIL 3XMSTEP-2 DO
FIT,J]* O;

FOR I* I STEP i UNTIL MSTEP'I DO BEGIN

COMMENT THIS LOOP FILLS COEFFICIENTS (8,2,13) AND CORRESPONDING EQNS
OBTAINED FROM (8,2,B)p(8,2,9);

IO*3xI; II*lO'l; 12*II'l;

IF I=l THEN BEGIN UO* PHO; VO* PSO; WO* XIO END

ELSE BEGIN UO* X[12-3]; VO_X[II-3]; WO*X[IO-3] END;
UI_ X[12]; VI*X[II]; WI*X[IO];

IF I=MSTEP'I THEN BEGIN U2* PHI; V2. PSl; W2_ X[SxMSTEP-2] END ELSE
BEGIN U2* X[I2+3]_ V2*X[II+3]; W2*X[IO+3] END;

DU_U2-UO; DV*V2-VO; DW_W2-WO; W_WO-2.0xWI+W2;
CEIO_CEI[IO]; CEII_CEI[II]; CEI2_CEI[12];

CE20*CE2[IO]; CE21_CE2[I1]; CE22*CE2[I2];
51+ SIN(UI); C1_ COS(UI);
52_ SIN(VI); C2- COS(V1);
FIANDF2; DERIVATIVES;

G*G/_,O; DGDPH+DGDPH/A,O; DGDPS_DGDPS/A,O;
A*DW+2,0xCEIO;

B*Ax(DV+2,0xCE11);
C_W+CE20;
IF I>l THEN BEGIN

F[12,12"3]_1,0;
F[I2plI"3]_-GxA;
F[12,10"3]_FI-Gx(DV+2,0xCEll);

F[II,I2"3]_GxA;
F[11_11"3]_I,0;
F[II_IO'3]_F2+Gx(DU+2.0xCE12);
F[IO, I2"3]*'FI;

F[IO, I1"3]_-F2;
F[IO,IO'3]*I,O END;

F[I2_I2]_=2,0+DF1DPHxC+DGDPHxB;
F[I2, II]_DF1DP$xC+DGDPSxB;
F[12_IO]_'2,OXFI;

B_Ax(DU+2,0xCEI2);
F[II_I2]_DF2DPHxc'DGDPHxB;
F[II_II]*'2,0+DF2DPSxC'DGDPSxB;

F[II,IO]_'2,OXF2;
C_DU+2,0xCEI2;

B_DV+2,0xCE11;
F[IO, I2]_DF1DPHxC+DF2DPHxB;
F[IO_I1]_DF1DP$xC+DF2DPSxB_
IF I<M$TEP-I THEN BEGIN

F[12,12+3]_I,0;
F[12, II+3]_GxA;

F[12,10+3]_FI+GxB;
F[II,12+3]_'GxA;

F[II,II+3]*I,O;
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F[II,IO+3]+F2-GxC;

F[IO,12+3]_FI;

F[IO, II+3]+F2;

F[IO, IO+3]_'I,0;
F[IO,3xMSTEP-2]_2oO/MSTEP

END ELSE BEGIN

F[I2,3xMSTEP'2]_FI+GxB;

F[II,3wMSTEP'2]*F2"GxC;

F[IOp3xMSTEP-2]_-I.0+2.O/MSTEP END

END LOOP;

COMMENT NOW FILL COEFFICIENTS OF EQN cORRESPONDING
51_ SIN(PHI); CI* COS(PHI);

52_ SIN(PSI); C2_ COS(PSI);

F1ANDF2;
IO_3xMSTEP; 12_10"2;

IF MSTEP>8 THEN BEGIN A*5OaO,O/2OlbO,O;

F[12,10"26]_AxF1;

F[12,10"25]_AxF2;

F[12,10"2A]_'A END;

A_-46080.0/20160.0;
F[12,1O'23]_AXFI;

F[I2*IO'22]_AXF2;

F[12,1O'21]_'A;

A'188160,0/20100,0;
F[12,10"20]_AXF1;

F[12, IO'Ig]_AXF2;

F[12,10"18]_'A;

A_'451584,0/201_0.0;
F[I2,10"I?]_AXFI;

F[12,1O'16]_AXF2;

F[12,10-15]_-A;

A_705600.0/20160.0;

FEI2,10"I_]_AXFI;

F[12,10"I3]_AxF2;

F[12,10"12]_'A;

A_'7526_0.0/20160.0;

F[12,10"11]_AXF1;

F[I2_IO'IO]'AXF2;

F[12,10" 9]_'A;

A*56A480.O/20160.O;

F[12_IO" 8]*AXFI;

F[I2,10" ?]_AXF2;
F[12_IO" 6]*-A;

A_'322560.0/20160.0;

F[12,10" 5]_AXFI;

F[I2,1O" _]_AxF2;
F[12,10" 3]_-A;

F[12,1O" 2]_'10958a,O/201bO,O+2,0/MSTEP;

FOR I_ 1 STEP i UNTIL 3xM5TEP'2 DO KKK[I]_'KK[I];
GAUSS(3xMSTEP'2,F_KKK,DX,51NGI)

END DIFFEQ;

TO (8,2.11);

PROCEDURE EXTRAPOLATE(Y,M,K); VALUE M_K; INTEGER M_K; ARRAY Y[*];

COMMENT EXTRAPOLATE IS CALLED BY CORRECTION;

BEGIN OHN INTEGER COUNT*I;

REAL T,DI,D2,D3;

O_N REAL ARRAY XZO:O],PHI_PSI_CHI[-3:M+3];
LABEL L1,L2,L3,RETURN;

SWITCH SW, LI,RETURN,RETURNmL2_RETURNmRETUR_,L3_RETURN,RETURN;
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GO TO SW[((COUNT_COUNT,I)=I) MOO 9+I];
LI: T*,5;

X[I]*Dt_DYDT(PM_M/2pM);

X[2]*D2*DYDT(PSpM/2,M);

X[3]*DS_DYDT(XI_M/2, M);

X[4]_PH[M/2]; X[5]*PS[M/2]; X[6]*XI[M/2];
- FOR I.I STEP 1 UNTIL M/2+3 DO BEGIN

KUTTAMERSDN(6tT, 1/M_XpDERIVpEPS_°OIxEPSJ8pSING,MSSG);

PHI[M/2+I]*X[O]; PSI[M/2+I]*X[5]; CHI[M/2+I]_X[6] ENO;

T+,5;
X[_]*PH[M/2]; X[5]*pS[M/2]; X[6]*XI[M/2];
X[1]*Dt; XC2]*D2; X[3]*D3;
FOR I*=I STEP -1 UNTIL "M/2-3 DO BEGIN

KUTTAMERSON(6,T,'I/M,X_DERIVpEPS,.OlXEPS, 8,SING,MSSG);
PHI[M/2+I]*X[A]; PSI[M/2+I]*X[5]; CHI[M/2+I]*X[b] END;
PHI[M/2]_PH[M/2]; PSI[M/2]*PS[M/2]; CHI[M/2]*XI[M/2];
FOR I*=3 STEP I UNTIL M+3 DO Y[I]*PHI[I];
GO TO RETURN;

L2! FOR I*'3 STEP 1 UNTIL M+3 DO Y[I]*PSI[I];
GO TO RETURN;

L3: FOR I*'3 STEP i UNTIL M+3 DO Y[I]*CHI[I];

RETURNI END EXTRAPOLATE;

PH[O]*PHOJ PH[MSTEP]*PH1;
P5[O]*PSO; PS[MSTEP]*P51;

Xl[O]*XIO;

FIRST-TRUE;

COMMENT INITIAL GUESS = READ FROM

READ(FOR I'I STEp 1 UNTIL MSTEP'I

[EXIT];

CARDS;
DO [PH[I],PS[I],XI[I]],XI[MSTEP])

COMMENT XIO,Xll REFER TO XI IN SECTION 8_ BUT XI[I] REFER5 TO CHI

(EXCEPT IN THE OUTPUT _HERE XI[I] REFERS TO XI);

FOR I.I STEP I UNTIL 3x(MSTEP-I) DO CEI[I]*CE2[I]*O;

TIM*TIME(2);

COMMENT START OF THE FINITE DIFFERENCE SOLUTION;

APPROX:

FOR I* I STEP I UNTIL MSTEP=I DO BEGIN

51. SIN(PH[I]); CI* COS(PHIl]);

52* SIN(PS[I]); C2. COS(P5[I]);

FIANDF2;

Ge (DHIDPS'FIxDDDPS'DH2DPH+F2XDDDPH)/D;

COMMENT KK[I] ARE THE R.H.5. OF THE DIFFERENTIAL ECNS IN DIFFEQ;

KK[3xI-2]. PH[I-I]'2xPH[I]+PH[I+I]+FIx(XI[I'I]-2xXI[I]+XI[I+I])+G/a

x(PS[I+l]-PS[I-1])x(XI[I+l]-XI[I=l])+CE2[3xI-2]+FlxCE2[3xI]

+G/2x((PS[I+I]-PS[I-1])xCEI[3xI]+(XI[I+I]-XI[I=I])xCEI[3xI-1])
+GxCEI[3xI'1]xCEI[3xl];

KK[3xI-1]. PS[I=I]-2xP$[I]+PS[I+I]+F2x(XI[I-1]-2xXI[I]+XI[I+I])-G/_
x(pH[I+I]-PH[I'1])x(XI[I+I]'XI[I'1])+CE2[3xI=I]+F2xCE2[3xI]

-G/2x((PH[I+I]-PH[I-1])xCEI[3xI]+(XI[I+I]-XI[I-1])xCEI[3xI-2])
-GxcEI[3XI-2)xCEI[3XI];

KK[3XI]_ Flx(PH[I+I]-PH[I'I])+F2x(PS[I+I]'PS[I-1])-XI[I+I]+XI[I-1]+2/
MSTEPx(XI[MSTEP]-XI1)+2xFlxCEI[3xI-2]+2xF2xCEI[3xI-1]-2xCEI[3xI]END;

I* MSTEP;

51- 51N(PH[I]); Cl* CO$(PH[I]);

52* $1N(PS[I]); C2_ CO5(PS[I]);

FIANDF2;

KK[3Xl-2]*(F1x(50AOxPH[I=B]=a60BOxPH[I=7]+I88160XPH[I-6]=A515B_xpH[I-5]

+705600XPH[I-a]-7526_OXPH[I-3]+564aSOXPH[I-2]-322560xPH[I-1]

+109584xPH[I])+F2x(50_OxPS[I=8]-46080xPS[I-7]+188160xpS[I-6]
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-_5158axpS[I-5]+705600xpS[I'A]'7526AOxpSEI'3]
+56aa8OxpS[i-2]-322560xpS[I-1]+lO9584xpS[II)-5CQOxxI[I'B]

+_6080xXIEI-7]-lB8160xXIEI-6]+A5158_xXI[I-5]-70560OxXI[I-A]
+7526aOxXi[I-3]-56aaBOxXIEI'2]+322560xXI[I-1]+(_O320/I-lO9584)xXI[I]

-_0320/IxXII)/20160;

T* O;
FOR I* ! STEP I UNTIL MSTEP'I DO BEGIN

X[3XI'2]_ PH[I];
XI3xI'1]_ PS{I];
X[3xl]_ XI[I] END;

X[3xMSTEP-2]* XI[MSTEP];

KUTTAMERSON(O ,T,I,X,DIFFEQ,EPS,,OlxEPS, 3,$ING2,MSSG);
KUTTAMERSON(3XMSTEP.2,T,1,X,DIFFEQ,IF FIRST THEN IOxEP5 ELSE EpSp

,OIxEPS,COUNT,SING2,MSSG);

CONST_ XII-X[3xMSTEP'2];

COMMENT COMPUTE THE AVERAGE RELATIVE CHANGE IN THE SOLUTION;

TEMP_T_O;
FOH I_1 STEP 1 UNTIL MSTEP-1 DO TEMP_TEMP+ABS(XC3xI-2]-PH[I])

+ABS(XC3XI'1)-PS[I])+ABSCX[3XI]-XI[II);

TE_P_TEMP+ABS(X[3xMSTEP-2]-XI[MSTEP]);
FOR I_1 STEP i UNTIL 3xMSTEP-2 DO T_T+ABS(XCl]);

5UM_TEMP/T;

FOR I* 1 STEP I UNTIL MSTEP-I DO BEGIN

PH[I]_ X[3xI'2];

PS[I]_ X[3XI'l];
XI[I]_ X[3Xl] END;

XIIMSTEP]* X[3xPSTEP-2];

COMMENT OUTPUT THE FINITE DIFFERENCE SOLN;

WRITE{[OBL],<"APpROX SOLN: CONST=",R12,5," AVG REL CHANGE="pRB,I,

" TIME REQn=",F6,2 >,CONST,SUM,('TIM+(TIM_TIME(2)))/60);

IF SUM > CHANGE OR FIRST THEN BEGIN
COMMENT COMPUTE FINITE DIFFERENCE CORRECTIONS CEIpCE2;

CORRECTION(MSTEP,B,PH,EXTRAPOLATE,KK,KKK);

FUR I'I STEP i UNTIL MSTEP't DO BEGIN

CEIE3xI-2]_KK[I];

CE2[3xl-2]_KKK[I] END;
CURRECTION(MSTEP,_pPS,EXTRAPOLATE,KK,KKK);

FOR I_I STEP I UNTIL MSTEP-! DO BEGIN

CEI[3xI-I]_KK[I];

CE2[3xI-I]_KKK[I] END;

CORRECTION(MSTEP,B,XI,EXTRAPOLATE_KK,KKK);

FOR I_i STEP 1 UNTIL MSTEP-I DO BEGIN

CEI[3xI ]_KK[I];

CE2[3xI ]_KKK[I] END;

FIRST,FALSE;
GO TO APPROX END COMPUTATION OF FINITE DIFFERENCE CORRECTIONS;

BEGIN ARRAY DD[0:3,0:3], DX,DPRIME[0:3], Y[0:6];

LABEL INTEGRATE,FINISH;

COMMENT IMPROVEMFNT OF THE FINITE DIFFERENCE SOLUTION,

COMMENT PHI=Y[_], PSI=Y[5], CHI=Y[6];

EPS*SAVEEPS_EPS/IO;
$1_ SIN(PHO); C1_ COS(PHO);

52_ SIN(PSO); C2_ COS(PSO);

FIANDF2;

FIO_ FI; F20_ F2;
COMMENT COMPUTATION OF THE INITIAL DERIVATIVES FRO_

FORMULAE;

PHD_(PH[I]'PH[O])XMSTEP;

SEE SECTION 8,3;

SECOND ORDFR
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PSD*(PS[1]'PS[O])XMSTEPJ

XID_(XI[I_'XI[O])XMSTEP;
OELI_OYDTCPH_O,_STEP)'PHD;
DEL2_DYDT(PSpOpMSTEP)-PSD;
DEL3_DYDT(XIpO_MSTEP)'XID;

DELI*DEL1/lOO; DEL2_DEL2/IO0; DEL3*DEL3/lOO;

COMMENT DELl, DEL2P DEL3 ARE THE INCREMENTS IN THE INITIAL DERIVATIVES;
INTEGRATE: Te O;

COMMENT SOLUTION OF THE DIFFERENTIAL EQNS AS AN INITIAL VALUE PROBLEM;
Y[1]_ PHD; Y[2]* PSD; Y[3]_ XID;
y[4]e PHO; Y[5]e PSO; Y[6]e XIO;

KUTTAMERSON(6,T, lpYeDERIVPEPS_,OIxEPSpSeSINGpMSSG);
Y_* Y[43; Y5_ Y[5]; y6* Y[63;
DX[1]_ Y_ePHI; DX[2]_ YS'PS1;
OX[3]_ Y6-XII+(CONST* FIOXpHD+F2OxPSO-XID);

5UM_ 2x(ABS(DX[1])+ABS(DX[2])+ABS(DXI3]))/(ABS(PHC)+ABS(PH1)+ABS(PSO)
+ABS(PS1)+ABS(XIO)+ABS(XI1));

NRITE([DBL],<"NORM="pR8,1_" DEL1,DEL2,DEL3="_R8°lp"p ",R8.1_", ",

R8,1_" CONST=",R12,5_ " ITERATION TIME="_F6,2>_SUMPDELlpDEL2_
DEL3pCONST,('TIM+(TIM_1IME(2)))/6O);

IF SUM<NORM THEN
IF EPS_SAVEEPS THEN GO TO FINISH ELSE BEGIN EPS_ EPS/IO;

HRITE([DBL],<"EPSILDN_EPSILON/lO">);
GO TO INTEGRATE END;

IF (COUNT* CDUNT-1)<O THEN BEGIN

WRITE([DBL],<-SOLN FAILED TO ATTAIN PRESCRIBED ACCURACY IN GIVEN NO,

OF ITERATIONS, CURRENT VALUES FOLLOW,">);

GD TO FINISH END;
COMMENT COMPUTATION OF THE INFLUENCE MATRIX DD, SEE (B,3,6);

T_ O;

IF DELI=O THEN DELI_(DELI+DEL2+OEL3)/3;

Y[I]_ PHD+DELI; Y[2]_ PSD; Y[3]_ XID;

Y[Q]_ PHO; Y[5]_ P50; Y[6]_ XIO;

KUTTAMERS_N(6,T,I_Y_DERIV_EPS,,OlxEPS, 8_SING,MSSG);
DD[1,1]e(Y[4]'Ya)/DEL1;
DD[2,1]_(Y[S]'YS)/DELI;

DD[3,t]*(Y[6]'Y6)/DELI+FIO;
T_ 03

IF DEL2=O THEN DEL2*(DELI+DEL2+DEL3)/3;
Y[1]_ PHD_ Y[2]_ PSD+DEL2; YC3]* XID;
y[_]e PHO; Y[5]* PSO; Y[6]_ XIO;
KUTTAMERSON(6,TeleYeDERIV,EPS,,OlxEPSeSeSINGeMSSG);

DD[le2]_(Y[_]'Y_)/DEL2;
DD[2,2]_(Y[5]'Y5)/DEL2;

DD[3,2]*(Y[6]'Y6)/DEL2+F20;
T_ O;

IF DEL3=O THEN DEL3_(DELI+DEL2+DEL3)/3;

Y[I]_ PHD; Y[2]_ PSD; Y[3]_ XID+DEL3;

Y[_]_ PHO; Y[5]* PSO; Y[6]_ XIO;

KUTTAMERSON(6eTel,YeDERIVeEPSe,OlxEPS,BeSING,MSSG);
DD[le3I_(Y[_]'Ya)/DEL3;
DD[2e3]_(Y[S]'Y5)/DEL3;
DD[3_3]_CY[6]'y6)/DEL3"1;
GAUSS3(DDeDX,DPRIME,BODL); IF BOOL THEN GO TO SING;

DELl • DPRIME[1]; DEL 2_ DPRIME[2]; DEL3_DPRIME[3];
COMMENT CORRECTION OF THE INITIAL DERIVATIVES;

PHD_ PHD-DEL1; PSD_ PSD-DEL2; XID_ XID'DEL3;
GO TO INTEGRATE;

FINISHI T_ 03
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y[l]* PHD; y[2]_ P5D; Y[3]_ XID;
Y[4]_ PHO; Y[5]_ PSO; y[6]_ XIO;

FOR I_ i STEP I UNTIL NSTEP DO BEGIN

KUTTAMERSON(6,T,1/NSTEP,Y*OERIVpEPS,.OlxEPS,B,SINGpMSSG);

PHIl]* Y[4]; PS[I] _ Y[5]; XI[I]_ Y[6] END;

END IMPROVEMENT _LOCK;

FOH I_ I STEP 1 UNTIL NSTEP DO XI[I]+ XICI]+CONSTXI/NSTEP;

COMMENT CONVERGENCE ACHEIVED - OUTPUT SOLUTION;

IF PRINT THEN BEGIN

WRITE(<///,X6,"TIME",X11,"PHI",X12,"PSI",X12,"XI",/>);
FOR I_ 0 STEP I UNTIL NSTEP DO

_RITE(<Fg.3,3R15.3>,I/NSTEP,PH[I]xRAD,PS[I]wRAD,XIEI]wRAD) END;

IF PLOT THEN BEGIN COMMENI MAKE A ROUGH PLOT OF SOLN ON LINE PRINTER;

ARRAY X[O:NSTEP],Y[OINSTEP, O:2];

_RITE({PAGE]);
WRITE(<"PLOT OF THE SOLUTION, 1=PHI, 2=PSI, 3=XI, T=O AT TOP OF ",

"PAGE,"//>);

FOR I_ 0 STEP I UNTIL NSTEP DO BEGIN

X[I]" I; y{I,O]* PH[I]; Y[I,I]_ PS[I]; y[I,2]_ XI[I] END;

GRAPHPLOTTER(X,Y,NSTEP+1,3,1,NSTEP+I,119, " "," ","1","2","3","4")
END PLOT;

IF PUNCH THEN BEGIN FILE OUT CARD 0 (2,10);

FOR I_ 0 STEP 2 UNTIL NSTEP DO
IF IXNSTEP THEN WRITE(CARD,<6EI3.6,12>,PHEI],PSEII,XI[I],PH{I+1],

PS[I+I],XICI+I],I/2)

ELSE WRIT_(CARO,<3E13.6,X3g, I2>,PH[I],PS[I],XI[I],I/2) END PUNCH;
END BLOCK WHERE ARRAYS pH ETC ARE DECLARED;

GO TO SING;

SINGI: kRITE([DBL],<"ERROR IN GAUSS IN DIFFEQ AT T=",RI3,b>,T);
GO TO SING;

SING2I _RITE([DBL],<"ERROR IN KUTTAMERSON FOR DIFFEQ AT T=",RI3.6>,T);

SING: WRITE(CPAGE]);

GU TO LOOP;

EXIT; END.

.229 .068a .0166 .327 .114 .512 .795 .507 SYSTEP

180 180 0 0 0 5 BOUNDARY
@'3 @'1 @-4 8 50 0 1 1 0 CONTROL

2.6 .4 0 2.2 .B 0 1.9 I.I 0 l.b 1.5 0 1.9 I.I 0 2.2 .8 0 2.6 ,_ 0 0
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